Brain insulin resistance impairs hippocampal synaptic plasticity and memory by increasing GluA1 palmitoylation through FoxO3a

被引:0
|
作者
Matteo Spinelli
Salvatore Fusco
Marco Mainardi
Federico Scala
Francesca Natale
Rosita Lapenta
Andrea Mattera
Marco Rinaudo
Domenica Donatella Li Puma
Cristian Ripoli
Alfonso Grassi
Marcello D’Ascenzo
Claudio Grassi
机构
[1] Università Cattolica Medical School,Institute of Human Physiology
[2] Hospitalization and Health Care,San Raffaele Pisana Scientific Institute for Research
[3] University of Salerno,Department of Chemistry and Biology
[4] Fondazione Policlinico Gemelli,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
High-fat diet (HFD) and metabolic diseases cause detrimental effects on hippocampal synaptic plasticity, learning, and memory through molecular mechanisms still poorly understood. Here, we demonstrate that HFD increases palmitic acid deposition in the hippocampus and induces hippocampal insulin resistance leading to FoxO3a-mediated overexpression of the palmitoyltransferase zDHHC3. The excess of palmitic acid along with higher zDHHC3 levels causes hyper-palmitoylation of AMPA glutamate receptor subunit GluA1, hindering its activity-dependent trafficking to the plasma membrane. Accordingly, AMPAR current amplitudes and, more importantly, their potentiation underlying synaptic plasticity were inhibited, as well as hippocampal-dependent memory. Hippocampus-specific silencing of Zdhhc3 and, interestingly enough, intranasal injection of the palmitoyltransferase inhibitor, 2-bromopalmitate, counteract GluA1 hyper-palmitoylation and restore synaptic plasticity and memory in HFD mice. Our data reveal a key role of FoxO3a/Zdhhc3/GluA1 axis in the HFD-dependent impairment of cognitive function and identify a novel mechanism underlying the cross talk between metabolic and cognitive disorders.
引用
收藏
相关论文
共 50 条
  • [1] Brain insulin resistance impairs hippocampal synaptic plasticity and memory by increasing GluA1 palmitoylation through FoxO3a
    Spinelli, Matteo
    Fusco, Salvatore
    Mainardi, Marco
    Scala, Federico
    Natale, Francesca
    Lapenta, Rosita
    Mattera, Andrea
    Rinaudo, Marco
    Li Puma, Domenica Donatella
    Ripoli, Cristian
    Grassi, Alfonso
    D'Ascenzo, Marcello
    Grassi, Claudio
    NATURE COMMUNICATIONS, 2017, 8
  • [2] Brain insulin resistance impairs hippocampal plasticity
    Spinelli, Matteo
    Fusco, Salvatore
    Grassi, Claudio
    HORMONES AND SYNAPSE, 2020, 114 : 281 - 306
  • [3] Hippocampal Insulin Resistance Impairs Spatial Learning and Synaptic Plasticity
    Grillo, Claudia A.
    Piroli, Gerardo G.
    Lawrence, Robert C.
    Wrighten, Shayna A.
    Green, Adrienne J.
    Wilson, Steven P.
    Sakai, Randall R.
    Kelly, Sandra J.
    Wilson, Marlene A.
    Mott, David D.
    Reagan, Lawrence P.
    DIABETES, 2015, 64 (11) : 3927 - 3936
  • [4] The C-terminal tails of endogenous GluA1 and GluA2 differentially contribute to hippocampal synaptic plasticity and learning
    Zhou, Zikai
    Liu, An
    Xia, Shuting
    Leung, Celeste
    Qi, Junxia
    Meng, Yanghong
    Xie, Wei
    Park, Pojeong
    Collingridge, Graham L.
    Jia, Zhengping
    NATURE NEUROSCIENCE, 2018, 21 (01) : 50 - +
  • [5] The C-terminal tails of endogenous GluA1 and GluA2 differentially contribute to hippocampal synaptic plasticity and learning
    Zikai Zhou
    An Liu
    Shuting Xia
    Celeste Leung
    Junxia Qi
    Yanghong Meng
    Wei Xie
    Pojeong Park
    Graham L. Collingridge
    Zhengping Jia
    Nature Neuroscience, 2018, 21 : 50 - 62
  • [6] Ubiquitination of the GluA1 Subunit of AMPA Receptors Is Required for Synaptic Plasticity, Memory, and Cognitive Flexibility
    Guntupalli, Sumasri
    Park, Pojeong
    Han, Dae Hee
    Zhang, Lingrui
    Yong, Xuan Ling Hilary
    Ringuet, Mitchell
    Blackmore, Daniel G.
    Jhaveri, Dhanisha J.
    Koentgen, Frank
    Widagdo, Jocelyn
    Kaang, Bong-Kiun
    Anggono, Victor
    JOURNAL OF NEUROSCIENCE, 2023, 43 (30): : 5448 - 5457
  • [7] Publisher Correction: The C-terminal tails of endogenous GluA1 and GluA2 differentially contribute to hippocampal synaptic plasticity and learning
    Zikai Zhou
    An Liu
    Shuting Xia
    Celeste Leung
    Junxia Qi
    Yanghong Meng
    Wei Xie
    Pojeong Park
    Graham L. Collingridge
    Zhengping Jia
    Nature Neuroscience, 2018, 21 : 1494 - 1494
  • [8] Early onset of cognitive impairment is associated with altered synaptic plasticity and enhanced hippocampal GluA1 expression in a mouse model of depression
    Gross, Moshe
    Sheinin, Anton
    Nesher, Elimelech
    Tikhonov, Tatiana
    Baranes, Danny
    Pinhasov, Albert
    Michaelevski, Izhak
    NEUROBIOLOGY OF AGING, 2015, 36 (05) : 1938 - 1952
  • [9] Maternal insulin resistance multigenerationally impairs synaptic plasticity and memory via gametic mechanisms
    Fusco, Salvatore
    Spinelli, Matteo
    Cocco, Sara
    Ripoli, Cristian
    Mastrodonato, Alessia
    Natale, Francesca
    Rinaudo, Marco
    Livrizzi, Giulia
    Grassi, Claudio
    NATURE COMMUNICATIONS, 2019, 10 (1)
  • [10] Maternal insulin resistance multigenerationally impairs synaptic plasticity and memory via gametic mechanisms
    Salvatore Fusco
    Matteo Spinelli
    Sara Cocco
    Cristian Ripoli
    Alessia Mastrodonato
    Francesca Natale
    Marco Rinaudo
    Giulia Livrizzi
    Claudio Grassi
    Nature Communications, 10