Uncertainty Principles for the Offset Linear Canonical Transform

被引:0
作者
Haiye Huo
机构
[1] Nanchang University,Department of Mathematics, School of Science
来源
Circuits, Systems, and Signal Processing | 2019年 / 38卷
关键词
Offset linear canonical transform; Uncertainty principle; Logarithmic uncertainty estimate; Entropic inequality; Localization;
D O I
暂无
中图分类号
学科分类号
摘要
The offset linear canonical transform (OLCT) provides a more general framework for a number of well-known linear integral transforms in signal processing and optics, such as Fourier transform, fractional Fourier transform, linear canonical transform. In this paper, to characterize simultaneous localization of a signal and its OLCT, we extend some different uncertainty principles (UPs), including Nazarov’s UP, Hardy’s UP, Beurling’s UP, logarithmic UP and entropic UP, which have already been well studied in the Fourier transform domain over the last few decades, to the OLCT domain in a broader sense.
引用
收藏
页码:395 / 406
页数:11
相关论文
共 41 条
  • [1] Beckner W(1995)Pitt’s inequality and the uncertainty principle Proc. Am. Math. Soc. 123 1897-1905
  • [2] Benedicks M(1985)On Fourier transforms of functions supported on sets of finite Lebesgue measure J. Math. Anal. Appl. 106 180-183
  • [3] Folland GB(1997)The uncertainty principle: a mathematical survey J. Fourier Anal. Appl. 3 207-238
  • [4] Sitaram A(2015)Sampling theorems and error estimates for random signals in the linear canonical transform domain Signal Process. 111 31-38
  • [5] Huo H(2017)The uncertainty principle for the two-sided quaternion Fourier transform Mediterr. J. Math. 14 221-231
  • [6] Sun W(1933)A theorem concerning Fourier transforms J. London Math. Soc. 8 227-198
  • [7] Haoui YE(1927)Uber den anschaulichen inhalt der quanten theoretischen kinematik und mechanik Zeitschrift für Physik 43 172-41
  • [8] Fahlaoui S(2007)Nazarov’s uncertainty principles in higher dimension J. Approx. Theory 149 30-1041
  • [9] Hardy GH(2013)Generalized prolate spheroidal wave functions for offset linear canonical transform in Clifford analysis Math. Methods Appl. Sci. 36 1028-717
  • [10] Heisenberg W(1993)Local estimates for exponential polynomials and their applications to inequalities of the uncertainty principle type Algebra I Analiz 5 663-532