Some Inequalities Involving Perimeter and Torsional Rigidity

被引:0
作者
Luca Briani
Giuseppe Buttazzo
Francesca Prinari
机构
[1] Università di Pisa,Dipartimento di Matematica
[2] Università di Ferrara,Dipartimento di Matematica e Informatica
来源
Applied Mathematics & Optimization | 2021年 / 84卷
关键词
Torsional rigidity; Shape optimization; Perimeter; Convex domains; 49Q10; 49J45; 49R05; 35P15; 35J25;
D O I
暂无
中图分类号
学科分类号
摘要
We consider shape functionals of the form Fq(Ω)=P(Ω)Tq(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_q(\Omega )=P(\Omega )T^q(\Omega )$$\end{document} on the class of open sets of prescribed Lebesgue measure. Here q>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q>0$$\end{document} is fixed, P(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P(\Omega )$$\end{document} denotes the perimeter of Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} and T(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T(\Omega )$$\end{document} is the torsional rigidity of Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}. The minimization and maximization of Fq(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_q(\Omega )$$\end{document} is considered on various classes of admissible domains Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}: in the class Aall\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}_{all}$$\end{document} of all domains, in the class Aconvex\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}_{convex}$$\end{document} of convex domains, and in the class Athin\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}_{thin}$$\end{document} of thin domains.
引用
收藏
页码:2727 / 2741
页数:14
相关论文
共 50 条
[41]   Equivalent flexural and torsional rigidity of hexagonal honeycomb [J].
Chen, D. H. .
COMPOSITE STRUCTURES, 2011, 93 (07) :1910-1917
[42]   New methods for estimating the torsional rigidity of composite bars [J].
Wall, Peter ;
Lukkassen, Dag ;
Meidell, Annette .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2009, 47 (04) :524-536
[43]   Embedding theorems related to torsional rigidity and principal frequency [J].
Avkhadiev, F. G. .
IZVESTIYA MATHEMATICS, 2022, 86 (01) :1-31
[44]   Torsional Rigidity of a Two-stage Cycloid Drive [J].
Kim, Kyoung-Hong ;
Lee, Chun-Se ;
Ahn, Hyeong-Joon .
TRANSACTIONS OF THE KOREAN SOCIETY OF MECHANICAL ENGINEERS A, 2009, 33 (11) :1217-1224
[45]   Flexural and torsional rigidity of colonoscopes at room and body temperatures [J].
Hellier, D. ;
Albermani, F. ;
Evans, B. ;
de Visser, H. ;
Adam, C. ;
Passenger, J. .
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART H-JOURNAL OF ENGINEERING IN MEDICINE, 2011, 225 (H4) :389-399
[46]   Versions of the Schwarz Lemma for Domain Moments and the Torsional Rigidity [J].
Abramov, D. A. ;
Avkhadiev, F. G. ;
Giniyatova, D. Kh. .
LOBACHEVSKII JOURNAL OF MATHEMATICS, 2011, 32 (02) :149-158
[47]   On the existence of solutions to the Orlicz–Minkowski problem for torsional rigidity [J].
Zejun Hu ;
Hai Li .
Archiv der Mathematik, 2023, 120 :543-555
[48]   Evaluation of Torsional Rigidity for Micro-Lattice Plates [J].
Ushijima, Kuniharu ;
Chen, Dai-Heng ;
Cantwell, Wesley J. .
ADVANCES IN FRACTURE AND DAMAGE MECHANICS XII, 2014, 577-578 :425-+
[49]   QUASI-PERIODIC STRUCTURE OPTIMIZATION OF THE TORSIONAL RIGIDITY [J].
POLISEVSKI, D .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1994, 15 (1-2) :121-129
[50]   Torsional rigidity of wood composite I-joists [J].
Hindman, D ;
Manbeck, HB ;
Janowiak, JJ .
WOOD AND FIBER SCIENCE, 2005, 37 (02) :292-303