Some Inequalities Involving Perimeter and Torsional Rigidity

被引:0
作者
Luca Briani
Giuseppe Buttazzo
Francesca Prinari
机构
[1] Università di Pisa,Dipartimento di Matematica
[2] Università di Ferrara,Dipartimento di Matematica e Informatica
来源
Applied Mathematics & Optimization | 2021年 / 84卷
关键词
Torsional rigidity; Shape optimization; Perimeter; Convex domains; 49Q10; 49J45; 49R05; 35P15; 35J25;
D O I
暂无
中图分类号
学科分类号
摘要
We consider shape functionals of the form Fq(Ω)=P(Ω)Tq(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_q(\Omega )=P(\Omega )T^q(\Omega )$$\end{document} on the class of open sets of prescribed Lebesgue measure. Here q>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q>0$$\end{document} is fixed, P(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P(\Omega )$$\end{document} denotes the perimeter of Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} and T(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T(\Omega )$$\end{document} is the torsional rigidity of Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}. The minimization and maximization of Fq(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_q(\Omega )$$\end{document} is considered on various classes of admissible domains Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}: in the class Aall\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}_{all}$$\end{document} of all domains, in the class Aconvex\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}_{convex}$$\end{document} of convex domains, and in the class Athin\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}_{thin}$$\end{document} of thin domains.
引用
收藏
页码:2727 / 2741
页数:14
相关论文
共 50 条
[31]   Bounds for the torsional rigidity of inhomogeneous cylindrical bars [J].
István Ecsedi ;
Attila Baksa .
Archive of Applied Mechanics, 2013, 83 :1001-1012
[32]   On the p-torsional rigidity of combinatorial graphs [J].
Bifulco, Patrizio ;
Mugnolo, Delio .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2025, 251
[33]   Interpolating between torsional rigidity and principal frequency [J].
Carroll, Tom ;
Ratzkin, Jesse .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 379 (02) :818-826
[34]   Measurement of torsional rigidity of yarns with different crimps [J].
Peiffer, Julie ;
Kim, KyoungOk ;
Yoshida, Hiroaki ;
Takatera, Masayuki .
TEXTILE RESEARCH JOURNAL, 2018, 88 (06) :605-613
[35]   Bounds for the torsional rigidity of inhomogeneous cylindrical bars [J].
Ecsedi, Istvan ;
Baksa, Attila .
ARCHIVE OF APPLIED MECHANICS, 2013, 83 (07) :1001-1012
[36]   Research on Test Methods of Frame Torsional Rigidity [J].
Jia, Lu ;
Dai, Huanyun ;
Song, Ye .
PROCEEDINGS OF THE 2015 INTERNATIONAL INDUSTRIAL INFORMATICS AND COMPUTER ENGINEERING CONFERENCE, 2015, :1081-1087
[37]   Estimates of Torsional Rigidity Using Conformal Characteristics [J].
Avkhadiev, F. G. .
LOBACHEVSKII JOURNAL OF MATHEMATICS, 2022, 43 (10) :2931-2937
[38]   Isoperimetric inequality for torsional rigidity in the complex plane [J].
Salahudinov, RG .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2001, 6 (03) :253-260
[39]   The Orlicz-Minkowski problem for torsional rigidity [J].
Li, Ni ;
Zhu, Baocheng .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (10) :8549-8572
[40]   Torsional rigidity of rectangular wood composite materials [J].
Hindman, D ;
Manbeck, HB ;
Janowiak, JJ .
WOOD AND FIBER SCIENCE, 2005, 37 (02) :283-291