Some Inequalities Involving Perimeter and Torsional Rigidity

被引:0
作者
Luca Briani
Giuseppe Buttazzo
Francesca Prinari
机构
[1] Università di Pisa,Dipartimento di Matematica
[2] Università di Ferrara,Dipartimento di Matematica e Informatica
来源
Applied Mathematics & Optimization | 2021年 / 84卷
关键词
Torsional rigidity; Shape optimization; Perimeter; Convex domains; 49Q10; 49J45; 49R05; 35P15; 35J25;
D O I
暂无
中图分类号
学科分类号
摘要
We consider shape functionals of the form Fq(Ω)=P(Ω)Tq(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_q(\Omega )=P(\Omega )T^q(\Omega )$$\end{document} on the class of open sets of prescribed Lebesgue measure. Here q>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q>0$$\end{document} is fixed, P(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P(\Omega )$$\end{document} denotes the perimeter of Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document} and T(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T(\Omega )$$\end{document} is the torsional rigidity of Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}. The minimization and maximization of Fq(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_q(\Omega )$$\end{document} is considered on various classes of admissible domains Ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega $$\end{document}: in the class Aall\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}_{all}$$\end{document} of all domains, in the class Aconvex\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}_{convex}$$\end{document} of convex domains, and in the class Athin\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {A}_{thin}$$\end{document} of thin domains.
引用
收藏
页码:2727 / 2741
页数:14
相关论文
共 50 条
[21]   Two-Sided Estimate for the Torsional Rigidity of Convex Domain Generalizing the Polya-Szego and Makai Inequalities [J].
Salakhudinov, R. G. ;
Gafiyatullina, L. I. .
LOBACHEVSKII JOURNAL OF MATHEMATICS, 2022, 43 (10) :3020-3032
[22]   Torsional rigidity of cotton hosiery yarns [J].
Banerjee, PK ;
Bhat, P .
INDIAN JOURNAL OF FIBRE & TEXTILE RESEARCH, 2005, 30 (02) :136-141
[23]   On Blaschke–Santaló diagrams for the torsional rigidity and the first Dirichlet eigenvalue [J].
Ilaria Lucardesi ;
Davide Zucco .
Annali di Matematica Pura ed Applicata (1923 -), 2022, 201 :175-201
[24]   Torsional Rigidity for Regions with a Brownian Boundary [J].
M. van den Berg ;
E. Bolthausen ;
F. den Hollander .
Potential Analysis, 2018, 48 :375-403
[25]   Torsional rigidity of freewheel mechanisms in drives [J].
Sharkov O.V. ;
Koryagin S.I. ;
Kalinin A.V. .
Russian Engineering Research, 2017, 37 (11) :954-956
[26]   Torsional Rigidity for Regions with a Brownian Boundary [J].
van den Berg, M. ;
Bolthausen, E. ;
den Hollander, F. .
POTENTIAL ANALYSIS, 2018, 48 (03) :375-403
[27]   On Blaschke-Santalo diagrams for the torsional rigidity and the first Dirichlet eigenvalue [J].
Lucardesi, Ilaria ;
Zucco, Davide .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2022, 201 (01) :175-201
[28]   A remark on perimeter-diameter and perimeter-circumradius inequalities under lattice constraints [J].
Gonzalez Merino, Bernardo ;
Henze, Matthias .
JOURNAL OF GEOMETRY, 2015, 106 (01) :75-83
[29]   Isoperimetric Inequality for Torsional Rigidity in Multidimensional Domains [J].
Avkhadiev, F. G. .
RUSSIAN MATHEMATICS, 2012, 56 (07) :39-43
[30]   Optimal Fiber Configurations for Maximum Torsional Rigidity [J].
Robert Lipton .
Archive for Rational Mechanics and Analysis, 1998, 144 :79-106