Vacancies in Hg1−xCdxTe

被引:0
|
作者
D. Chandra
H. F. Schaake
J. H. Tregilgas
F. Aqariden
M. A. Kinch
A. J. Syllaios
机构
[1] DRS Infrared Technologies,
[2] Raytheon Systems Company,undefined
来源
关键词
HgCdTe; vacancy defects; CdTe; phase equilibria;
D O I
暂无
中图分类号
学科分类号
摘要
Measurements have been performed of the carrier concentrations in vacancy-doped Hg1−xCdxTe with x=0.22, 0.29, 0.45, and 0.5. Anneals to establish the carrier concentrations were performed on both the mercury- and tellurium-rich sides of the phase field. When these results were added to earlier data for x=0.2 and 0.4, and assuming that all vacancies are doubly ionized, then vacancy concentrations for all values of x and anneal temperature can be represented by simple equations. On the mercury side of the phase field, the vacancy concentrations varied as 2.50×1023(1−x) exp[−1.00/kT] for low concentrations, and as 3.97×107(1−x)1/3ni2/3 exp[−0.33/kT] for high concentrations, where ni is the intrinsic carrier concentration. On the tellurium rich side, the vacancy concentrations varied as 2.81 × 1022(1−x) exp[−0.65/kT] for low concentrations and as 1.92×107(1−x)1/3ni2/3 exp[−0.22/kT] for high concentrations.
引用
收藏
页码:729 / 731
页数:2
相关论文
共 50 条
  • [21] Improved determination of matrix compostion of Hg1−xCdxTe by SIMS
    Jack Sheng
    Larry Wang
    Gayle E. Lux
    Yumin Gao
    Journal of Electronic Materials, 1997, 26 : 588 - 592
  • [22] UNUSUAL BEHAVIOR OF Hg1 - xCdxTe AND ITS EXPLANATION.
    Spicer, W.E.
    Silberman, J.A.
    Morgen, P.
    Lindau, I.
    Wilson, J.A.
    Chen, An-Ban
    Sher, A.
    Physica B: Physics of Condensed Matter & C: Atomic, Molecular and Plasma Physics, Optics, 1982, 117-118 (Pt I): : 60 - 62
  • [23] Activation of arsenic as an acceptor in Hg1−xCdxTe under equilibrium conditions
    D. Chandra
    H. F. Schaake
    M. A. Kinch
    F. Aqariden
    C. F. Wan
    D. F. Weirauch
    H. D. Shih
    Journal of Electronic Materials, 2002, 31 : 715 - 719
  • [24] 1/f noise in large-area Hg1−xCdxTe photodiodes
    A. I. D’Souza
    M. G. Stapelbroek
    P. N. Dolan
    P. S. Wijewarnasuriya
    R. E. DeWames
    D. S. Smith
    J. C. Ehlert
    Journal of Electronic Materials, 2003, 32 : 633 - 638
  • [25] SIMS quantification of As and In in Hg1−xCdxTe materials of different x values
    Larry Wang
    Lily H. Zhang
    Journal of Electronic Materials, 2000, 29 : 873 - 876
  • [26] Modification of Hg1−xCdxTe properties by low-energy ions
    K. D. Mynbaev
    V. I. Ivanov-Omskii
    Semiconductors, 2003, 37 : 1127 - 1150
  • [27] Electrophysical properties of Hg1−xCdxTe crystals under hydrostatic pressure
    I. V. Virt
    V. D. Prozorovskii
    D. I. Tsyutsyura
    Semiconductors, 2000, 34 : 32 - 34
  • [28] Raman scattering and electrical studies of the phase stability in the Hg1−xCdxTe
    Anand Singh
    A. K. Shukla
    R. Pal
    Applied Physics A, 2016, 122
  • [29] Investigation of Multicarrier Transport in LPE-Grown Hg1−xCdxTe Layers
    G. A. Umana-Membreno
    J. Antoszewski
    L. Faraone
    E. P. G. Smith
    G. M. Venzor
    S. M. Johnson
    V. Phillips
    Journal of Electronic Materials, 2010, 39 : 1023 - 1029
  • [30] P-type as-doping of Hg1−xCdxTe grown by MOMBE
    L. H. Zhang
    S. D. Pearson
    W. Tong
    B. K. Wagner
    J. D. Benson
    C. J. Summers
    Journal of Electronic Materials, 1998, 27 : 600 - 604