Approximate solutions of the hyperbolic Kepler equation

被引:0
|
作者
Martín Avendano
Verónica Martín-Molina
Jorge Ortigas-Galindo
机构
[1] Centro Universitario de la Defensa,IUMA
[2] Academia General Militar,Departamento de Didáctica de las Matemáticas, Facultad de Ciencias de la Educación
[3] Universidad de Zaragoza,undefined
[4] Universidad de Sevilla,undefined
[5] Instituto de Educación Secundaria Élaios,undefined
来源
Celestial Mechanics and Dynamical Astronomy | 2015年 / 123卷
关键词
Hyperbolic Kepler’s equation; Newton’s method; Smale’s ; -theory; Optimal starter;
D O I
暂无
中图分类号
学科分类号
摘要
We provide an approximate zero S~(g,L)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\widetilde{S}(g,L)$$\end{document} for the hyperbolic Kepler’s equation S-garcsinh(S)-L=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S-g\,{{\mathrm{arcsinh}}}(S)-L=0$$\end{document} for g∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g\in (0,1)$$\end{document} and L∈[0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L\in [0,\infty )$$\end{document}. We prove, by using Smale’s α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-theory, that Newton’s method starting at our approximate zero produces a sequence that converges to the actual solution S(g, L) at quadratic speed, i.e. if Sn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S_n$$\end{document} is the value obtained after n iterations, then |Sn-S|≤0.52n-1|S~-S|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|S_n-S|\le 0.5^{2^n-1}|\widetilde{S}-S|$$\end{document}. The approximate zero S~(g,L)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\widetilde{S}(g,L)$$\end{document} is a piecewise-defined function involving several linear expressions and one with cubic and square roots. In bounded regions of (0,1)×[0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(0,1) \times [0,\infty )$$\end{document} that exclude a small neighborhood of g=1,L=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g=1, L=0$$\end{document}, we also provide a method to construct simpler starters involving only constants.
引用
收藏
页码:435 / 451
页数:16
相关论文
共 50 条
  • [41] Approximate Treatment of the Dirac Equation with Hyperbolic Potential Function
    Durmus, Aysen
    FEW-BODY SYSTEMS, 2018, 59 (02)
  • [42] Approximate Treatment of the Dirac Equation with Hyperbolic Potential Function
    Aysen Durmus
    Few-Body Systems, 2018, 59
  • [44] Approximate Solutions of the Dunkl-Schrödinger Equation for the Hyperbolic Pöschl-Teller Potential
    Schulze-Halberg, Axel
    FEW-BODY SYSTEMS, 2024, 65 (02)
  • [45] Explicit and approximate solutions for a classical hyperbolic fragmentation equation using a hybrid projected differential transform method
    Yadav, Nisha
    Ansari, Zeeshan
    Singh, Randhir
    Das, Ashok
    Singh, Sukhjit
    Heinrich, Stefan
    Singh, Mehakpreet
    PHYSICS OF FLUIDS, 2024, 36 (09)
  • [46] GLOBAL SOLUTIONS TO A QUASILINEAR HYPERBOLIC EQUATION
    Miranda, Manuel Milla
    Medeiros, Luiz A.
    Louredo, Aldo T.
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2020,
  • [47] NEW SOLUTIONS OF HYPERBOLIC TELEGRAPH EQUATION
    Inc, Mustafa
    Partohaghighi, Mohammad
    Akinlar, Mehmet Ali
    Weber, Gerhard-Wilhelm
    JOURNAL OF DYNAMICS AND GAMES, 2021, 8 (02): : 129 - 138
  • [48] ON SOLUTIONS TO THE WAVE EQUATION IN HYPERBOLIC SPACE
    MILES, JW
    JOURNAL OF APPLIED PHYSICS, 1952, 23 (12) : 1400 - 1400
  • [49] The Lambert W function and solutions to Kepler’s equation
    Prasenjit Sengupta
    Celestial Mechanics and Dynamical Astronomy, 2007, 99 : 13 - 22
  • [50] The Lambert W function and solutions to Kepler's equation
    Sengupta, Prasenjit
    CELESTIAL MECHANICS & DYNAMICAL ASTRONOMY, 2007, 99 (01): : 13 - 22