Harmonic Bergman Spaces on the Real Hyperbolic Ball: Atomic Decomposition, Interpolation and Inclusion Relations

被引:1
作者
Ureyen, A. Ersin [1 ]
机构
[1] Eskisehir Tech Univ, Fac Sci, Dept Math, TR-26470 Eskisehir, Turkiye
关键词
Real hyperbolic ball; Hyperbolic harmonic function; Bergman space; Atomic decomposition; Interpolation; Inclusion relations; SEQUENCES;
D O I
10.1007/s11785-024-01484-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For alpha > -1 and 0 < p < infinity, we study weighted Bergman spaces B-alpha(p) of harmonic functions on the real hyperbolic ball. We obtain an atomic decomposition of Bergman functions in terms of reproducing kernels. We show that an r-separated sequence {a(m)} with sufficiently larger is an interpolating sequence for B-alpha(p). Using these we determine precisely when a Bergman space B-alpha(p) is included in another Bergman space B-beta(q).
引用
收藏
页数:25
相关论文
共 16 条