The Evolution of Stress Intensity Factors and the Propagation of Cracks in Elastic Media

被引:0
作者
Avner Friedman
Bei Hu
Juan J. L. Velazquez
机构
[1] Department of Mathematics¶University of Minnesota¶Minneapolis,
[2] MN 55455,undefined
[3] Department of Mathematics¶University of Notre Dame¶Notre Dame,undefined
[4] IN 46556,undefined
[5] Departamento de Matematica Aplicada¶Facultad de Matematicas¶Universidad Complutense¶28040 Madrid,undefined
[6] Spain,undefined
来源
Archive for Rational Mechanics and Analysis | 2000年 / 152卷
关键词
Coordinate System; Stress Intensity; Intensity Factor; Stress Intensity Factor; Plane Strain;
D O I
暂无
中图分类号
学科分类号
摘要
When a crack Γs propagates in an elastic medium the stress intensity factors evolve with the tip x(s) of Γs. In this paper we derive formulae which describe the evolution of these stress intensity factors for a homogeneous isotropic elastic medium under plane strain conditions. Denoting by ψ=ψ(x,s) the stress potential (ψ is biharmonic and has zero traction along the crack Γs) and by κ(s) the curvature of the crack at the tip x(s), we prove that the stress intensity factors A1(s), A2(s), as functions of s, satisfy:\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} are stress intensity factors of the tangential derivative of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document} in the polar coordinate system at x(s) with θ=0 in the direction of the crack at x(s). The case of antiplane shearing is also briefly considered; in this case ψ is harmonic.
引用
收藏
页码:103 / 139
页数:36
相关论文
共 50 条
  • [21] Study of stress intensity factors near cracks in plates made of linearly viscoelastic fiber composites
    V. P. Netrebko
    Mechanics of Composite Materials, 1997, 33 : 225 - 230
  • [22] Stress intensity factor K and the elastic T-stress for corner cracks
    L.G. Zhao
    J. Tong
    J. Byrne
    International Journal of Fracture, 2001, 109 : 209 - 225
  • [23] Stress intensity factor K and the elastic T-stress for corner cracks
    Zhao, LG
    Tong, J
    Byrne, J
    INTERNATIONAL JOURNAL OF FRACTURE, 2001, 109 (02) : 209 - 225
  • [24] Stress intensity factors of double and multiple edge cracks
    Noda, NA
    Tsuru, M
    Oda, K
    JSME INTERNATIONAL JOURNAL SERIES A-SOLID MECHANICS AND MATERIAL ENGINEERING, 1997, 40 (01): : 1 - 7
  • [25] Stress intensity factors for branching cracks in space structures
    Zvyagin, A., V
    Luzhin, A. A.
    Smirnov, N. N.
    Shamina, A. A.
    Shamin, A. Y.
    ACTA ASTRONAUTICA, 2021, 180 : 66 - 72
  • [26] A numerical analysis of stress intensity factors at bifurcated cracks
    Yan, XQ
    ENGINEERING FAILURE ANALYSIS, 2006, 13 (04) : 629 - 637
  • [27] Stress intensity factors of elliptical cracks at the weld toe
    Livieri, Paolo
    Segala, Fausto
    THEORETICAL AND APPLIED FRACTURE MECHANICS, 2023, 128
  • [28] Stress intensity factors for slanted through-wall cracks based on elastic finite element analyses
    Huh, N. -S.
    Shim, D. -J.
    Choi, S.
    Wilkowski, G. M.
    Yang, J. -S.
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2008, 31 (02) : 197 - 208
  • [29] Stress intensity factors for surface cracks at countersunk holes
    Park, Chul Young
    Grandt, Alten F., Jr.
    Suh, Jung Jun
    ENGINEERING FRACTURE MECHANICS, 2006, 73 (13) : 1878 - 1898
  • [30] Intensity factors for subinterface cracks in dissimilar anisotropic piezoelectric media
    Beom, HG
    Jeong, KM
    Kim, YH
    ARCHIVE OF APPLIED MECHANICS, 2003, 73 (3-4) : 184 - 198