Segmentation and quantification of intra-ventricular/cerebral hemorrhage in CT scans by modified distance regularized level set evolution technique

被引:0
作者
K. N. Bhanu Prakash
Shi Zhou
Tim C. Morgan
Daniel F. Hanley
Wieslaw L. Nowinski
机构
[1] SBIC,Biomedical Imaging Lab
[2] Biopolis,Division of Brain Injury OutComes
[3] Agency for Science,Department of Neurology
[4] Technology and Research,undefined
[5] Department of Neurology,undefined
[6] Johns Hopkins University,undefined
[7] Johns Hopkins University,undefined
来源
International Journal of Computer Assisted Radiology and Surgery | 2012年 / 7卷
关键词
Segmentation; Level sets; Hemorrhage; CT; Brain;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:785 / 798
页数:13
相关论文
共 48 条
[1]  
Nieuwkamp DJ(2000)Treatment and outcome of severe intraventricular extension in patients with subarachnoid or intracerebral hemorrhage: a systematic review of the literature J Neurol 247 117-121
[2]  
de Gans K(2006)Hematoma growth is a determinant of mortality and poor outcome after intracerebral hemorrhage Neurology 66 1175-1181
[3]  
Rinkel GJ(2006)Long-term mortality after intracerebral hemorrhage Neurology 66 1182-1186
[4]  
Davis SM(2009)Automated ventricular systems segmentation in brain CT images by combining low-level segmentation and high-level template matching BMC Med Inform Decis Mak 9 S4-298
[5]  
Broderick J(2007)Computer aided detection of small acute intracranial hemorrhage on computer tomography of brain Comput Med Imaging Graph 31 285-1172
[6]  
Hennerici M(2008)Computer-aided assessment of head computed tomography (CT) studies in patients with suspected traumatic brain injury J Neurotrauma 25 1163-1217
[7]  
Flaherty ML(2008)Automatic segmentation of intracranial hematoma and volume measurement Conf Proc IEEE Eng Med Biol Soc 2008 1214-311
[8]  
Haverbusch M(2009)Semi-automated method for brain hematoma and edema quantification using computed tomography Comput Med Imaging Graph 33 304-331
[9]  
Sekar P(1987)Snakes: active contour models Int J Comput Vis 1 321-49
[10]  
Chen W(1988)Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations J Comput Phys 79 12-223