The Initial-Boundary-Value Problems for the Hirota Equation on the Half-Line

被引:0
作者
Lin Huang
机构
[1] Hangzhou Dianzi University,School of Science
[2] Fudan University,School of Mathematical Sciences
来源
Chinese Annals of Mathematics, Series B | 2020年 / 41卷
关键词
Hirota equation; Riemann-Hilbert problem; Initial-boundary value problem; Global relation; 35Q15; 35Q55;
D O I
暂无
中图分类号
学科分类号
摘要
An initial boundary-value problem for the Hirota equation on the half-line, 0 < x < ∞, t > 0, is analysed by expressing the solution q(x, t) in terms of the solution of a matrix Riemann-Hilbert (RH) problem in the complex k-plane. This RH problem has explicit (x, t) dependence and it involves certain functions of k referred to as the spectral functions. Some of these functions are defined in terms of the initial condition q(x, 0) = q0(x), while the remaining spectral functions are defined in terms of the boundary values q(0, t) = g0(t), qx(0, t) = g1(t) and qxx(0, t) = g2(t). The spectral functions satisfy an algebraic global relation which characterizes, say, g2(t) in terms of {q0(x), g0(t), g1(t)}. The spectral functions are not independent, but related by a compatibility condition, the so-called global relation.
引用
收藏
页码:117 / 132
页数:15
相关论文
共 39 条
[1]  
Hirota R(1973)Exact envelope-soliton solutions of a nonlinear wave equation J. Math. Phys. 14 805-809
[2]  
Lakshmanan M(1983)Equivalent forms of a generalized Hirota’s equation with linear inhomogeneities J. Phys. Soc. Jpn. 52 4031-4034
[3]  
Ganesan S(2012)Multisolitons, breathers, and rogue waves for the Hirota equation generated by the Darboux transformation Phys. Rev. E 85 026601-1443
[4]  
Tao Y(1997)A unified transform method for solving linear and certain nonlinear PDEs Proc. Roy. Soc. Lond. A 453 1411-39
[5]  
He J(2002)Integrable nonlinear evolution equations on the half-line Commun. Math. Phys. 230 1-875
[6]  
Fokas A S(2012)Initial-boundary value problems for integrable evolution equations with 3 × 3 Lax pairs Physica D 241 857-139
[7]  
Fokas A S(2013)The KdV equation on the half-line: The Dirichlet to Neumann map J. Phys. A 46 345203-164
[8]  
Lenells J(2013)The Degasperis-Procesi equation on the half-line Nonlinear Analysis 76 122-323
[9]  
Lenells J(2004)The mKDV equation on the half-line J. Inst. Math. Jussieu. 3 139-33
[10]  
Lenells J(2008)The Camassa-Holm equation on the half-line: A Riemann-Hilbert Approach J. Geom. Anal. 18 285-T203