Boundary Points, Minimal L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} Integrals and Concavity Property [inline-graphic not available: see fulltext]: Vector Bundles

被引:0
作者
Qi’an Guan
Zhitong Mi
Zheng Yuan
机构
[1] Peking University,School of Mathematical Sciences
[2] Beijing Jiaotong University,School of Mathematics and Statistics
关键词
Concavity; Boundary points; Singular hermitian metric; Holomorphic vector bundle; 32Q15; 32F10; 32U05; 32W05;
D O I
10.1007/s12220-023-01371-1
中图分类号
学科分类号
摘要
In this article, for singular hermitian metrics on holomorphic vector bundles, we consider minimal L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} integrals on sublevel sets of plurisubharmonic functions on weakly pseudoconvex Kähler manifolds related to modules at boundary points of the sublevel sets, and establish a concavity property of the minimal L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} integrals. As applications, we present a necessary condition for the concavity degenerating to linearity, a strong openness property of the modules and a twisted version, an effectiveness result of the strong openness property of the modules, and an optimal support function related to the modules.
引用
收藏
相关论文
共 54 条
[11]  
Demailly J-P(2019)A proof of Saitoh’s conjecture for conjugate Hardy J. Math. Soc. Japan 71 1173-1179
[12]  
Ein L(2022) kernels Sci. China Math. 65 887-932
[13]  
Lazarsfeld R(2023)Concavity of minimal Nagoya Math. J. 74 1269-1293
[14]  
Demailly J-P(2022) integrals related to multiplier ideal sheaves on weakly pseudoconvex Kähler manifolds J. Math. Soc. Japan 181 1139-1208
[15]  
Kollár J(2015)Concavity property of minimal Ann. Math. (2) 182 605-616
[16]  
Demailly J-P(2015) integrals with Lebesgue measurable gain Ann. Math. (2) 202 635-676
[17]  
Peternell T(2015)An optimal support function related to the strong openness property Invent. Math. 60 967-976
[18]  
Fornæss JE(2017)A solution of an Sci. China Math. 769 1-33
[19]  
Wu JJ(2020) extension problem with an optimal estimate and applications J. Reine Angew. Math. 271 1011-1035
[20]  
Fornæss JE(2012)A proof of Demailly’s strong openness conjecture Math. Z. 62 2145-2209