Boundary Points, Minimal L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} Integrals and Concavity Property [inline-graphic not available: see fulltext]: Vector Bundles

被引:0
作者
Qi’an Guan
Zhitong Mi
Zheng Yuan
机构
[1] Peking University,School of Mathematical Sciences
[2] Beijing Jiaotong University,School of Mathematics and Statistics
关键词
Concavity; Boundary points; Singular hermitian metric; Holomorphic vector bundle; 32Q15; 32F10; 32U05; 32W05;
D O I
10.1007/s12220-023-01371-1
中图分类号
学科分类号
摘要
In this article, for singular hermitian metrics on holomorphic vector bundles, we consider minimal L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} integrals on sublevel sets of plurisubharmonic functions on weakly pseudoconvex Kähler manifolds related to modules at boundary points of the sublevel sets, and establish a concavity property of the minimal L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^2$$\end{document} integrals. As applications, we present a necessary condition for the concavity degenerating to linearity, a strong openness property of the modules and a twisted version, an effectiveness result of the strong openness property of the modules, and an optimal support function related to the modules.
引用
收藏
相关论文
共 54 条
  • [1] Cao JY(2017)A general extension theorem for cohomology classes on non reduced analytic subspaces Sci. China Math. 60 949-962
  • [2] Demailly J-P(1998)Singular Hermitian metrics on vector bundles J. Reine Angew. Math. 502 93-122
  • [3] Matsumura S(2018)Monotonicity of nonpluripolar products and complex Monge-Ampére equations with prescribed singularity Anal. PDE 11 2049-2087
  • [4] de Cataldo MAA(2021)The metric geometry of singularity types J. Reine Angew. Math. 771 137-170
  • [5] Darvas T(2000)A subadditivity property of multiplier ideals Michigan Math. J. 48 137-156
  • [6] Di Nezza E(2001)Semi-continuity of complex singularity exponents and Kähler-Einstein metrics on Fano orbifolds Ann. Sci. Éc. Norm. Supér. (4) 34 525-556
  • [7] Lu HC(2003)A Kawamata-Viehweg vanishing theorem on compact Kähler manifolds J. Differ. Geom. 63 231-277
  • [8] Darvas T(2018)A global approximation result by Bert Alan Taylor and the strong openness conjecture in J. Geom. Anal. 28 1-12
  • [9] Di Nezza E(2020)Weighted approximation in Math. Z. 294 1051-1064
  • [10] Lu HC(2019)A sharp effectiveness result of Demailly’s strong Openness conjecture Adv. Math. 348 51-80