Sparse graphical Gaussian modeling of the isoprenoid gene network in Arabidopsis thaliana

被引:0
|
作者
Anja Wille
Philip Zimmermann
Eva Vranová
Andreas Fürholz
Oliver Laule
Stefan Bleuler
Lars Hennig
Amela Prelić
Peter von Rohr
Lothar Thiele
Eckart Zitzler
Wilhelm Gruissem
Peter Bühlmann
机构
[1] Swiss Federal Institute of Technology (ETH),Reverse Engineering Group
[2] Colab,undefined
[3] ETH,undefined
[4] Seminar for Statistics,undefined
[5] ETH,undefined
[6] Institute for Plant Sciences and Functional Genomics Center Zurich,undefined
[7] ETH,undefined
[8] Computer Engineering and Networks Laboratory,undefined
[9] ETH,undefined
[10] Institute of Computational Science,undefined
[11] ETH,undefined
来源
关键词
Carotenoid; Gene Pair; Additional Data File; Isoprenoid; Plastoquinone;
D O I
暂无
中图分类号
学科分类号
摘要
We present a novel graphical Gaussian modeling approach for reverse engineering of genetic regulatory networks with many genes and few observations. When applying our approach to infer a gene network for isoprenoid biosynthesis in Arabidopsis thaliana, we detect modules of closely connected genes and candidate genes for possible cross-talk between the isoprenoid pathways. Genes of downstream pathways also fit well into the network. We evaluate our approach in a simulation study and using the yeast galactose network.
引用
收藏
相关论文
共 50 条
  • [31] Functional analysis of the Arabidopsis thaliana GCPE protein involved in plastid isoprenoid biosynthesis
    Querol, J
    Campos, N
    Imperial, S
    Boronat, A
    Rodríguez-Concepción, M
    FEBS LETTERS, 2002, 514 (2-3) : 343 - 346
  • [32] Link Prediction via Sparse Gaussian Graphical Model
    Zhang, Liangliang
    Yang, Longqi
    Hu, Guyu
    Pan, Zhisong
    Li, Zhen
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2016, 2016
  • [33] DC algorithm for estimation of sparse Gaussian graphical models
    Shiratori, Tomokaze
    Takano, Yuichi
    PLOS ONE, 2024, 19 (12):
  • [34] Learning Sparse Gaussian Graphical Models with Overlapping Blocks
    Hosseini, Mohammad Javad
    Lee, Su-In
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [35] Inferring sparse Gaussian graphical models with latent structure
    Ambroise, Christophe
    Chiquet, Julien
    Matias, Catherine
    ELECTRONIC JOURNAL OF STATISTICS, 2009, 3 : 205 - 238
  • [36] Bayesian Structure Learning in Sparse Gaussian Graphical Models
    Mohammadi, A.
    Wit, E. C.
    BAYESIAN ANALYSIS, 2015, 10 (01): : 109 - 138
  • [37] Graphical models for sparse data: Graphical Gaussian models with vertex and edge symmetries
    Hojsgaard, Soren
    COMPSTAT 2008: PROCEEDINGS IN COMPUTATIONAL STATISTICS, 2008, : 105 - 116
  • [38] Fitting very large sparse Gaussian graphical models
    Kiiveri, Harri
    de Hoog, Frank
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (09) : 2626 - 2636
  • [39] Multiple Gaussian graphical estimation with jointly sparse penalty
    Tao, Qinghua
    Huang, Xiaolin
    Wang, Shuning
    Xi, Xiangming
    Li, Li
    SIGNAL PROCESSING, 2016, 128 : 88 - 97
  • [40] Generalized Sparse Gaussian Graphical Model on the Bethe Lattice
    Tanaka, Kazuyuki
    Ricci-Tersenghi, Federico
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2024, 93 (07)