Sparse graphical Gaussian modeling of the isoprenoid gene network in Arabidopsis thaliana

被引:0
|
作者
Anja Wille
Philip Zimmermann
Eva Vranová
Andreas Fürholz
Oliver Laule
Stefan Bleuler
Lars Hennig
Amela Prelić
Peter von Rohr
Lothar Thiele
Eckart Zitzler
Wilhelm Gruissem
Peter Bühlmann
机构
[1] Swiss Federal Institute of Technology (ETH),Reverse Engineering Group
[2] Colab,undefined
[3] ETH,undefined
[4] Seminar for Statistics,undefined
[5] ETH,undefined
[6] Institute for Plant Sciences and Functional Genomics Center Zurich,undefined
[7] ETH,undefined
[8] Computer Engineering and Networks Laboratory,undefined
[9] ETH,undefined
[10] Institute of Computational Science,undefined
[11] ETH,undefined
来源
关键词
Carotenoid; Gene Pair; Additional Data File; Isoprenoid; Plastoquinone;
D O I
暂无
中图分类号
学科分类号
摘要
We present a novel graphical Gaussian modeling approach for reverse engineering of genetic regulatory networks with many genes and few observations. When applying our approach to infer a gene network for isoprenoid biosynthesis in Arabidopsis thaliana, we detect modules of closely connected genes and candidate genes for possible cross-talk between the isoprenoid pathways. Genes of downstream pathways also fit well into the network. We evaluate our approach in a simulation study and using the yeast galactose network.
引用
收藏
相关论文
共 50 条
  • [11] Modeling correlated samples via sparse matrix Gaussian graphical models
    Yizhou HE
    Xi CHEN
    Hao WANG
    JournalofZhejiangUniversity-ScienceC(Computers&Electronics), 2013, 14 (02) : 107 - 117
  • [12] Gene Regulatory Network for Tapetum Development in Arabidopsis thaliana
    Li, Dan-Dan
    Xue, Jing-Shi
    Zhu, Jun
    Yang, Zhong-Nan
    FRONTIERS IN PLANT SCIENCE, 2017, 8
  • [13] Weighted lasso in graphical gaussian modeling for large gene network estimation based on microarray data
    Shimamura, Teppei
    Imoto, Seiya
    Yamaguchi, Rui
    Miyano, Satoru
    GENOME INFORMATICS 2007, VOL 19, 2007, 19 : 142 - 153
  • [14] Reconstruction of gene regulatory network related to photosynthesis in Arabidopsis thaliana
    Yu, Xianbin
    Zheng, Guangyong
    Shan, Lanlan
    Meng, Guofeng
    Vingron, Martin
    Liu, Qi
    Zhu, Xin-Guang
    FRONTIERS IN PLANT SCIENCE, 2014, 5
  • [15] Population Genomics of the Arabidopsis thaliana Flowering Time Gene Network
    Flowers, Jonathan M.
    Hanzawa, Yoshie
    Hall, Megan C.
    Moore, Richard C.
    Purugganan, Michael D.
    MOLECULAR BIOLOGY AND EVOLUTION, 2009, 26 (11) : 2475 - 2486
  • [16] Network Analysis of Gene Transcriptions of Arabidopsis thaliana in Spaceflight Microgravity
    Manian, Vidya
    Orozco, Jairo
    Gangapuram, Harshini
    Janwa, Heeralal
    Agrinsoni, Carlos
    GENES, 2021, 12 (03)
  • [17] Sparse Gaussian Graphical Models for Speech Recognition
    Bell, Peter
    King, Simon
    INTERSPEECH 2007: 8TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION, VOLS 1-4, 2007, : 1545 - 1548
  • [18] Sparse Gaussian Graphical Model with Missing Values
    Uda, Shinsuke
    Kubota, Hiroyuki
    PROCEEDINGS OF THE 2017 21ST CONFERENCE OF OPEN INNOVATIONS ASSOCIATION (FRUCT), 2017, : 336 - 343
  • [19] Edge detection in sparse Gaussian graphical models
    Luo, Shan
    Chen, Zehua
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 70 : 138 - 152
  • [20] ON SPARSE COMPLEX GAUSSIAN GRAPHICAL MODEL SELECTION
    Tugnait, Jitendra K.
    2019 IEEE 29TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2019,