Sparse graphical Gaussian modeling of the isoprenoid gene network in Arabidopsis thaliana

被引:0
|
作者
Anja Wille
Philip Zimmermann
Eva Vranová
Andreas Fürholz
Oliver Laule
Stefan Bleuler
Lars Hennig
Amela Prelić
Peter von Rohr
Lothar Thiele
Eckart Zitzler
Wilhelm Gruissem
Peter Bühlmann
机构
[1] Swiss Federal Institute of Technology (ETH),Reverse Engineering Group
[2] Colab,undefined
[3] ETH,undefined
[4] Seminar for Statistics,undefined
[5] ETH,undefined
[6] Institute for Plant Sciences and Functional Genomics Center Zurich,undefined
[7] ETH,undefined
[8] Computer Engineering and Networks Laboratory,undefined
[9] ETH,undefined
[10] Institute of Computational Science,undefined
[11] ETH,undefined
来源
关键词
Carotenoid; Gene Pair; Additional Data File; Isoprenoid; Plastoquinone;
D O I
暂无
中图分类号
学科分类号
摘要
We present a novel graphical Gaussian modeling approach for reverse engineering of genetic regulatory networks with many genes and few observations. When applying our approach to infer a gene network for isoprenoid biosynthesis in Arabidopsis thaliana, we detect modules of closely connected genes and candidate genes for possible cross-talk between the isoprenoid pathways. Genes of downstream pathways also fit well into the network. We evaluate our approach in a simulation study and using the yeast galactose network.
引用
收藏
相关论文
共 50 条
  • [1] Sparse graphical Gaussian modeling of the isoprenoid gene network in Arabidopsis thaliana -: art. no. R92
    Wille, A
    Zimmermann, P
    Vranová, E
    Fürholz, A
    Laule, O
    Bleuler, S
    Hennig, L
    Prelic, A
    von Rohr, P
    Thiele, L
    Zitzler, E
    Gruissem, W
    Bühlmann, P
    GENOME BIOLOGY, 2004, 5 (11)
  • [2] An Arabidopsis gene network based on the graphical Gaussian model
    Ma, Shisong
    Gong, Qingqiu
    Bohnert, Hans J.
    GENOME RESEARCH, 2007, 17 (11) : 1614 - 1625
  • [3] Inferring transcriptional gene regulation network of starch metabolism in Arabidopsis thaliana leaves using graphical Gaussian model
    Ingkasuwan, Papapit
    Netrphan, Supatcharee
    Prasitwattanaseree, Sukon
    Tanticharoen, Morakot
    Bhumiratana, Sakarindr
    Meechai, Asawin
    Chaijaruwanich, Jeerayut
    Takahashi, Hideki
    Cheevadhanarak, Supapon
    BMC SYSTEMS BIOLOGY, 2012, 6
  • [4] Robust sparse Gaussian graphical modeling
    Hirose, Kei
    Fujisawa, Hironori
    Sese, Jun
    JOURNAL OF MULTIVARIATE ANALYSIS, 2017, 161 : 172 - 190
  • [5] Gene Regulation Network Inference With Joint Sparse Gaussian Graphical Models
    Chun, Hyonho
    Zhang, Xianghua
    Zhao, Hongyu
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2015, 24 (04) : 954 - 974
  • [6] Computational modeling of gene structure in Arabidopsis thaliana
    Brendel, V
    Zhu, W
    PLANT MOLECULAR BIOLOGY, 2002, 48 (1-2) : 49 - 58
  • [7] Computational modeling of gene structure in Arabidopsis thaliana
    Volker Brendel
    Wei Zhu
    Plant Molecular Biology, 2002, 48 : 49 - 58
  • [8] Functional Gene Network of Prenyltransferases in Arabidopsis thaliana
    Kopcsayova, Diana
    Vranova, Eva
    MOLECULES, 2019, 24 (24):
  • [9] Mathematical modeling of an oscillating gene circuit to unravel the circadian clock network of Arabidopsis thaliana
    Bujdoso, Nora
    Davis, Seth J.
    FRONTIERS IN PLANT SCIENCE, 2013, 4
  • [10] Modeling correlated samples via sparse matrix Gaussian graphical models
    Yi-zhou HE
    Xi CHEN
    Hao WANG
    Frontiers of Information Technology & Electronic Engineering, 2013, (02) : 107 - 117