Two wave functions and dS/CFT on S1 × S2

被引:0
作者
Gabriele Conti
Thomas Hertog
机构
[1] KU Leuven,Institute for Theoretical Physics
[2] ,undefined
来源
Journal of High Energy Physics | / 2015卷
关键词
AdS-CFT Correspondence; Models of Quantum Gravity; Black Holes;
D O I
暂无
中图分类号
学科分类号
摘要
We evaluate the tunneling and Hartle-Hawking wave functions on S1 × S2 boundaries in Einstein gravity with a positive cosmological constant. In the large overall volume limit the classical predictions of both wave functions include an ensemble of Schwarzschild-de Sitter black holes. We show that the Hartle-Hawking tree level measure on the classical ensemble converges in the small S1 limit. A divergence in this regime can be identified in the tunneling state. However we trace this to the contribution of an unphysical branch of saddle points associated with negative mass black holes. Using a representation in which all saddle points have an interior Euclidean anti-de Sitter region we also derive a holographic form of both semiclassical wave functions on S1 × S2 boundaries.
引用
收藏
相关论文
共 43 条
  • [1] Hartle JB(2008)No-Boundary Measure of the Universe Phys. Rev. Lett. 100 201301-undefined
  • [2] Hawking SW(2011)Local Observation in Eternal inflation Phys. Rev. Lett. 106 141302-undefined
  • [3] Hertog T(1986)Boundary Conditions in Quantum Cosmology Phys. Rev. D 33 3560-undefined
  • [4] Hartle JB(1983)Wave Function of the Universe Phys. Rev. D 28 2960-undefined
  • [5] Hawking SW(2001)The dS/CFT correspondence JHEP 10 034-undefined
  • [6] Hertog T(2002)Mass, entropy and holography in asymptotically de Sitter spaces Phys. Rev. D 65 123508-undefined
  • [7] Vilenkin A(2004)The Black hole final state JHEP 02 008-undefined
  • [8] Hartle JB(2009)Holographic Multiverse JCAP 01 021-undefined
  • [9] Hawking SW(2012)Holographic No-Boundary Measure JHEP 05 095-undefined
  • [10] Strominger A(2013)Wave function of Vasiliev’s universe: A few slices thereof Phys. Rev. D 88 084049-undefined