Algebraic integrability of foliations with numerically trivial canonical bundle

被引:0
|
作者
Andreas Höring
Thomas Peternell
机构
[1] Université Côte d’Azur,CNRS, LJAD
[2] Universität Bayreuth,Mathematisches Institut
来源
Inventiones mathematicae | 2019年 / 216卷
关键词
14J32; 37F75; 14E30;
D O I
暂无
中图分类号
学科分类号
摘要
Given a reflexive sheaf on a mildly singular projective variety, we prove a flatness criterion under certain stability conditions. This implies the algebraicity of leaves for sufficiently stable foliations with numerically trivial canonical bundle such that the second Chern class does not vanish. Combined with the recent works of Druel and Greb–Guenancia–Kebekus this establishes the Beauville–Bogomolov decomposition for minimal models with trivial canonical class.
引用
收藏
页码:395 / 419
页数:24
相关论文
共 50 条