Finiteness of graded generalized local cohomology modules

被引:0
作者
A. Mafi
H. Saremi
机构
[1] University of Kurdistan Pasdaran ST.,
[2] Islamic Azad University,undefined
来源
Mathematical Notes | 2013年 / 94卷
关键词
local cohomology modules; generalized local cohomology modules; graded modules; Noetherian ring;
D O I
暂无
中图分类号
学科分类号
摘要
We consider two finitely generated graded modules over a homogeneous Noetherian ring \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R = \oplus _{n \in \mathbb{N}_0 } R_n$$\end{document} with a local base ring (R0, m0) and irrelevant ideal R+ of R. We study the generalized local cohomology modules Hbi (M,N) with respect to the ideal b = b0 + R+, where b0 is an ideal of R0. We prove that if dimR0/b0 ≤ 1, then the following cases hold: for all i ≥ 0, the R-module Hbi(M,N)/a0Hbi(M,N) is Artinian, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt {\mathfrak{a}_0 + \mathfrak{b}_0 } = \mathfrak{m}_0$$\end{document}; for all i ≥ 0, the set \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Ass_{R_0 } \left( {H_\mathfrak{b}^i \left( {M,N} \right)_n } \right)$$\end{document} is asymptotically stable as n→−∞. Moreover, if Hbi(M,N)n is a finitely generated R0-module for all n ≤ n0 and all j < i, where n0 ∈ ℤ and i ∈ ℕ0, then for all n ≤ n0, the set \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Ass_{R_0 } \left( {H_\mathfrak{b}^i \left( {M,N} \right)_n } \right)$$\end{document} is finite.
引用
收藏
页码:642 / 646
页数:4
相关论文
共 21 条
[1]  
Brodmann M(2002)Cohomological patterns of coherent sheaves over projective schemes J. Pure Appl. Algebra 172 165-182
[2]  
Hellus M(2003)Local cohomology over homogeneous rings with one-dimensional local base ring Proc. Amer. Math. Soc. 131 2977-2985
[3]  
Brodmann M(2007)On the asymptotic behavior of associated primes of generalized local cohomology modules J. Aust.Math. Soc. 83 217-225
[4]  
Fumasoli S(2005)Some properties of graded local cohomology modules J. Algebra 283 232-247
[5]  
Tajarod R(2005)Associated primes of graded components of generalized local cohomology modules Comm. Algebra 33 3081-3090
[6]  
Khashyarmanesh K(2011)On minimax and graded local cohomologymodules Southeast Asian Bull.Math. 35 805-812
[7]  
Abbasi A(2012)Artinianness of certain graded local cohomology modules Canad. Math. Bull. 55 153-156
[8]  
Rotthaus C(2009)Local cohomology modules with respect to an ideal containing the irrelevant ideal J. Pure Appl. Algebra 213 573-581
[9]  
Şega L M(1978)On the generalized local cohomology and its duality J. Math. KyotoUniv. 18 71-85
[10]  
Khashyarmanesh K(2011)Generalized local cohomology modules and homological Gorenstein dimensions Comm. Algebra 39 2051-2067