Model reduction of linear multi-agent systems by clustering with H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\mathcal {H}_2}$$\end{document} and H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{\mathcal {H}_\infty }$$\end{document} error bounds

被引:0
作者
Hidde-Jan Jongsma
Petar Mlinarić
Sara Grundel
Peter Benner
Harry L. Trentelman
机构
[1] University of Groningen,Johann Bernoulli Institute for Mathematics and Computer Science
[2] Max Planck Institute for Dynamics of Complex Technical Systems,undefined
关键词
Model reduction; Clustering; Multi-agent system; Consensus; Graph partitions;
D O I
10.1007/s00498-018-0212-6
中图分类号
学科分类号
摘要
In the recent paper (Monshizadeh et al. in IEEE Trans Control Netw Syst 1(2):145–154, 2014. https://doi.org/10.1109/TCNS.2014.2311883), model reduction of leader–follower multi-agent networks by clustering was studied. For such multi-agent networks, a reduced order network is obtained by partitioning the set of nodes in the graph into disjoint sets, called clusters, and associating with each cluster a single, new, node in a reduced network graph. In Monshizadeh et al. (2014), this method was studied for the special case that the agents have single integrator dynamics. For a special class of graph partitions, called almost equitable partitions, an explicit formula was derived for the H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {H}_2$$\end{document} model reduction error. In the present paper, we will extend and generalize the results from Monshizadeh et al. (2014) in a number of directions. Firstly, we will establish an a priori upper bound for the H2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {H}_2$$\end{document} model reduction error in case that the agent dynamics is an arbitrary multivariable input–state–output system. Secondly, for the single integrator case, we will derive an explicit formula for the H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {H}_\infty $$\end{document} model reduction error. Thirdly, we will prove an a priori upper bound for the H∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {H}_\infty $$\end{document} model reduction error in case that the agent dynamics is a symmetric multivariable input–state–output system. Finally, we will consider the problem of obtaining a priori upper bounds if we cluster using arbitrary, possibly non almost equitable, partitions.
引用
收藏
相关论文
共 61 条
[1]  
Besselink B(2016)Clustering-based model reduction of networked passive systems IEEE Trans Autom Control 61 2958-2973
[2]  
Sandberg H(2007)Laplacian eigenvectors and eigenvalues and almost equitable partitions Eur J Combin 28 665-673
[3]  
Johansson KH(2017)Reduction of second-order network systems with structure preservation IEEE Trans Autom Control 62 5026-5038
[4]  
Cardoso DM(2012)Interacting with networks: how does structure relate to controllability in single-leader, consensus networks? IEEE Control Syst Mag 32 66-73
[5]  
Delorme C(2004)Information flow and cooperative control of vehicle formations IEEE Trans Autom Control 49 1465-1476
[6]  
Rama P(2014)Target control of complex networks Nature Commun 5 5415-37
[7]  
Cheng X(2015)Clustered model reduction of interconnected second-order systems Nonlinear Theory Appl IEICE 6 26-247
[8]  
Kawano Y(2015)Clustered model reduction of positive directed networks Automatica 59 238-63
[9]  
Scherpen JMA(2014)Model reduction and clusterization of large-scale bidirectional networks IEEE Trans Autom Control 59 48-323
[10]  
Egerstedt M(1999)Data clustering: a review ACM Comput Surv 31 264-224