Generalization of the Dehornoy–Lafont Order Complex to Categories: Application to Exceptional Braid Groups

被引:0
作者
Owen Garnier
机构
[1] LAMFA,
[2] Université de Picardie Jules Verne,undefined
[3] CNRS UMR 7352,undefined
来源
Applied Categorical Structures | 2024年 / 32卷
关键词
Garside category; Gaussian category; Homology; Complex braid groups; Primary 20J06; 18G35; Secondary 20F36; 20F55;
D O I
暂无
中图分类号
学科分类号
摘要
The homology of a Garside monoid, thus of a Garside group, can be computed efficiently through the use of the order complex defined by Dehornoy and Lafont. We construct a categorical generalization of this complex and we give some computational techniques which are useful for reducing computing time. We then use this construction to complete results of Salvetti, Callegaro and Marin regarding the homology of exceptional complex braid groups. We most notably study the case of the Borchardt braid group B(G31)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B(G_{31})$$\end{document} through its associated Garside category.
引用
收藏
相关论文
共 53 条
[1]  
Arnold VI(1970)Certain topological invariants of algebraic functions Trudy Moskov. Mat. Obšč. 21 27-46
[2]  
Bannai E(1976)Fundamental groups of the spaces of regular orbits of the finite unitary groups of rank 2 J. Math. Soc. Jpn. 28 447-454
[3]  
Bessis D(2015)Finite complex reflection arrangements are K(p, 1) Ann. Math. (2) 181 809-904
[4]  
Bestvina M(1999)Non-positively curved aspects of Artin groups of finite type Geom. Topol. 3 269-302
[5]  
Birman JS(2007)Conjugacy in Garside groups. I. Cyclings, powers and rigidity Groups Geom. Dyn. 1 221-279
[6]  
Gebhardt V(1997)The Magma algebra system. I. The user language J. Symb. Comput. 24 235-265
[7]  
González-Meneses J(2018)Correspondence functors and finiteness conditions J. Algebra 495 150-198
[8]  
Bosma W(1971)Die Fundamentalgruppe des Raumes der regulären Orbits einer endlichen komplexen Spiegelungsgruppe Invent. Math. 12 57-61
[9]  
Cannon J(1972)Artin-Gruppen und Coxeter-Gruppen Invent. Math. 17 245-271
[10]  
Playoust C(1998)Complex reflection groups, braid groups, Hecke algebras J. Reine Angew. Math. 500 127-190