Crooked binomials

被引:0
作者
Jürgen Bierbrauer
Gohar M. Kyureghyan
机构
[1] Michigan Technological University,Department of Mathematical Sciences
[2] Otto-von-Guericke University,Department of Mathematics
来源
Designs, Codes and Cryptography | 2008年 / 46卷
关键词
Crooked functions; APN functions; Codes; Cyclotomic cosets; Preparata codes; 11T06; 11T71;
D O I
暂无
中图分类号
学科分类号
摘要
A function f : GF(2r) → GF(2r) is called crooked if the sets {f(x) + f(x + a)|x ∈ GF(2r)} is an affine hyperplane for any nonzero a ∈ GF(2r). We prove that a crooked binomial function f(x) = xd + uxe defined on GF(2r) satisfies that both exponents d, e have 2-weights at most 2.
引用
收藏
页码:269 / 301
页数:32
相关论文
共 13 条
[1]  
Bending T.D.(1998)Crooked functions, bent functions, and distance regular graphs Electron. J. Comb. 5 R34-98
[2]  
Fon-Der-Flaass D.(1993)A sharpening of the Johnson bound for binary linear codes and the nonexistence of linear codes with Preparata parameters Des. Codes Cryptogr. 3 95-156
[3]  
Brouwer A.E.(1998)Codes, bent functions and permutations suitable for DES-like cryptosystems Des. Codes Cryptogr. 15 125-98
[4]  
Tolhuizen L.(2003)Codes, graphs, and schemes from nonlinear functions Eur. J. Combin. 24 85-747
[5]  
Carlet C.(2006)A new APN function which is not equivalent to a power mapping IEEE Trans. Inform. Theory 52 744-726
[6]  
Charpin P.(2007)Crooked maps in Finite Fields Their Appl. 13 713-undefined
[7]  
Zinoviev V.(undefined)undefined undefined undefined undefined-undefined
[8]  
van Dam E.R.(undefined)undefined undefined undefined undefined-undefined
[9]  
Fon-Der-Flaass D.(undefined)undefined undefined undefined undefined-undefined
[10]  
Edel Y.(undefined)undefined undefined undefined undefined-undefined