CT-based manual segmentation and evaluation of paranasal sinuses

被引:0
作者
S. Pirner
K. Tingelhoff
I. Wagner
R. Westphal
M. Rilk
F. M. Wahl
F. Bootz
Klaus W. G. Eichhorn
机构
[1] University of Bonn,Clinic und Policlinic of Otolaryngology/Ear, Nose and Throat Surgery
[2] Universitätsklinikum Bonn,Institute of Robotics and Process Control
[3] Technical University of Braunschweig,undefined
来源
European Archives of Oto-Rhino-Laryngology | 2009年 / 266卷
关键词
Manual segmentation; Paranasal sinuses; FESS; Computed tomography; 3D model; Robot;
D O I
暂无
中图分类号
学科分类号
摘要
Manual segmentation of computed tomography (CT) datasets was performed for robot-assisted endoscope movement during functional endoscopic sinus surgery (FESS). Segmented 3D models are needed for the robots’ workspace definition. A total of 50 preselected CT datasets were each segmented in 150–200 coronal slices with 24 landmarks being set. Three different colors for segmentation represent diverse risk areas. Extension and volumetric measurements were performed. Three-dimensional reconstruction was generated after segmentation. Manual segmentation took 8–10 h for each CT dataset. The mean volumes were: right maxillary sinus 17.4 cm³, left side 17.9 cm³, right frontal sinus 4.2 cm³, left side 4.0 cm³, total frontal sinuses 7.9 cm³, sphenoid sinus right side 5.3 cm³, left side 5.5 cm³, total sphenoid sinus volume 11.2 cm³. Our manually segmented 3D-models present the patient’s individual anatomy with a special focus on structures in danger according to the diverse colored risk areas. For safe robot assistance, the high-accuracy models represent an average of the population for anatomical variations, extension and volumetric measurements. They can be used as a database for automatic model-based segmentation. None of the segmentation methods so far described provide risk segmentation. The robot’s maximum distance to the segmented border can be adjusted according to the differently colored areas.
引用
收藏
页码:507 / 518
页数:11
相关论文
共 50 条
  • [41] Solitary fibrous tumor of the paranasal sinuses: CT and MR appearance
    Kim, TA
    Brunberg, JA
    Pearson, JP
    Ross, DA
    AMERICAN JOURNAL OF NEURORADIOLOGY, 1996, 17 (09) : 1767 - 1772
  • [42] Complex Automatic Evaluation of the Medical Images of the Paranasal Sinuses
    Radutny, Radiy
    Nechyporenko, Alina
    Alekseeva, Victoriia
    Yurevych, Nadiia
    Lupyr, Andrii
    Gargin, Vitaliy
    IDDM 2021: INFORMATICS & DATA-DRIVEN MEDICINE: PROCEEDINGS OF THE 4TH INTERNATIONAL CONFERENCE ON INFORMATICS & DATA-DRIVEN MEDICINE (IDDM 2021), 2021, 3038 : 182 - 189
  • [43] The effectiveness of guidelines in reducing inappropriate CT scans of the paranasal sinuses
    Worley, GA
    Kotnis, R
    Jacomb-Hood, J
    Salama, N
    RHINOLOGY, 2001, 39 (03) : 125 - 127
  • [44] Automated Computer Software Compared with Manual Measurements for CT-Based Urinary Stone Metrics: An Evaluation Study
    Bell, John Roger
    Posielski, Natasza M.
    Penniston, Kristina L.
    Lubner, Meghan G.
    Nakada, Stephen Y.
    Pickhardt, Perry J.
    JOURNAL OF ENDOUROLOGY, 2018, 32 (05) : 455 - 461
  • [45] Development of CT-based methods for longitudinal analyses of paranasal sinus osteitis in granulomatosis with polyangiitis
    Sigrun Skaar Holme
    Jon Magnus Moen
    Karin Kilian
    Hilde Haukeland
    Øyvind Molberg
    Heidi B. Eggesbø
    BMC Medical Imaging, 19
  • [46] Automated CT-based segmentation and quantification of total intracranial volume
    Aguilar, Carlos
    Edholm, Kaijsa
    Simmons, Andrew
    Cavallin, Lena
    Muller, Susanne
    Skoog, Ingmar
    Larsson, Elna-Marie
    Axelsson, Rimma
    Wahlund, Lars-Olof
    Westman, Eric
    EUROPEAN RADIOLOGY, 2015, 25 (11) : 3151 - 3160
  • [47] Deep Learning-Based Fully Automatic Segmentation of the Paranasal Sinuses in Chronic Rhinosinusitis Patients Using Computed Tomographic Images
    Wang, Yuhang
    Zhang, Xiaolei
    Du, Weidong
    Dai, Na
    Lyv, Yi
    Wu, Keying
    Tian, Yiyang
    Jie, Yuxin
    Lin, Yu
    Kang, Weipiao
    IEEE ACCESS, 2025, 13 : 16444 - 16454
  • [48] Volumetric assessment of sphenoid sinuses through segmentation on CT scan
    Gibelli, Daniele
    Cellina, Michaela
    Gibelli, Stefano
    Oliva, Antonio Giancarlo
    Codari, Marina
    Termine, Giovanni
    Sforza, Chiarella
    SURGICAL AND RADIOLOGIC ANATOMY, 2018, 40 (02) : 193 - 198
  • [49] Automated CT-based segmentation and quantification of total intracranial volume
    Carlos Aguilar
    Kaijsa Edholm
    Andrew Simmons
    Lena Cavallin
    Susanne Muller
    Ingmar Skoog
    Elna-Marie Larsson
    Rimma Axelsson
    Lars-Olof Wahlund
    Eric Westman
    European Radiology, 2015, 25 : 3151 - 3160
  • [50] CT and cross-sectional anatomy of the paranasal sinuses in the Holstein cow
    Turgut, Nimet
    Bahar, Sadullah
    Kilincer, Abidin
    VETERINARY RADIOLOGY & ULTRASOUND, 2023, 64 (02) : 211 - 223