共 34 条
- [31] On the Diophantine equations z2=f(x)2±f(y)2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z^2=f(x)^2 \pm f(y)^2$$\end{document} involving quartic polynomials Periodica Mathematica Hungarica, 2019, 79 (1) : 25 - 31
- [32] The diophantine equation (y+q1)(y+q2)⋯(y+qm)=f(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(y + q_{1})(y + q_{2})\cdots(y + q_{m}) = f(x)}$$\end{document} Acta Mathematica Hungarica, 2015, 146 (1) : 40 - 46
- [33] On the Diophantine equation ∏i≤m(diy+qi)=f(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\displaystyle \prod \nolimits _{i \le m}(d_iy + q_{i}) = f(x)$$\end{document} Afrika Matematika, 2018, 29 (7-8) : 1091 - 1095
- [34] A note on the Diophantine equation (x+a1)r1+(x+a2)r2+⋯+(x+am)rm=yn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(x + a_1)^{r_1} + (x + a_2)^{r_2} + \cdots + (x + a_m)^{r_m} = y^n$$\end{document} Afrika Matematika, 2019, 30 : 957 - 958