The estimate for mean values on prime numbers relative to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac{4} {p} = \frac{1} {{n_1 }} + \frac{1} {{n_2 }} + \frac{1} {{n_3 }} $\end{document}

被引:0
|
作者
ChaoHua Jia
机构
[1] Chinese Academy of Sciences,Institute of Mathematics
[2] Chinese Academy of Sciences,Hua Loo
关键词
Diophantine equation; prime number; mean value; 11D68;
D O I
10.1007/s11425-011-4348-9
中图分类号
学科分类号
摘要
If n is a positive integer, let f(n) denote the number of positive integer solutions (n1, n2, n3) of the Diophantine equation \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac{4} {n} = \frac{1} {{n_1 }} + \frac{1} {{n_2 }} + \frac{1} {{n_3 }} $\end{document} For the prime number p, f(p) can be split into f1(p) + f2(p), where fi(p) (i = 1, 2) counts those solutions with exactly i of denominators n1, n2, n3 divisible by p.
引用
收藏
页码:465 / 474
页数:9
相关论文
共 34 条