共 34 条
- [21] On the Diophantine Equation cx2+p2m=4yn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$cx^2+p^{2m}=4y^n$$\end{document} Results in Mathematics, 2021, 76 (2)
- [22] On integral graphs which belong to the class\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\overline {\alpha K_{a,a} \cup \beta {\rm K}_{b,b} } $$ \end{document} Journal of Applied Mathematics and Computing, 2006, 20 (1-2) : 61 - 74
- [23] On integral graphs which belong to the class\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\overline {\alpha K_a \cup \beta K_b } $$ \end{document} Journal of Applied Mathematics and Computing, 2004, 14 (1-2) : 39 - 49
- [24] On the Diophantine equation Cx2+D=2yq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Cx^{2}+D=2y^{q}$$\end{document} The Ramanujan Journal, 2020, 53 (2) : 389 - 397
- [25] The equation x4+2ny4=z4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x^4+2^ny^4=z^4$$\end{document} in algebraic number fields Acta Mathematica Hungarica, 2022, 167 (1) : 309 - 331
- [26] A note on the Diophantine equation f(x)f(y)=f(z2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(x)f(y)=f(z^2)$$\end{document} Periodica Mathematica Hungarica, 2015, 70 (2) : 209 - 215
- [27] On the diophantine equation y2=∏i≤8(x+ki)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varvec{y^{2} = \prod _{i \le 8}(x + k_i)}$$\end{document} Proceedings - Mathematical Sciences, 2018, 128 (4)
- [28] On the Diophantine Equation dx2+p2aq2b=4yp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$dx^2+p^{2a}q^{2b}=4y^p$$\end{document} Results in Mathematics, 2022, 77 (1)
- [29] On the resolution of the Diophantine equation Un+Um=xq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$U_n + U_m = x^q$$\end{document}On the resolution of the Diophantine...P. K. Bhoi et al. The Ramanujan Journal, 2025, 66 (2)
- [30] On the integer solutions of the Diophantine equations z2=f(x)2±f(y)2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$z^2=f(x)^2 \pm f(y)^2$$\end{document} Periodica Mathematica Hungarica, 2022, 85 (2) : 369 - 379