共 34 条
- [1] On 1w+1x+1y+1z=12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\frac{1}{w} + \frac{1}{x} + \frac{1}{y} + \frac{1}{z} = \frac{1}{ 2} $\end{document} and some of its generalizations Journal of Inequalities and Applications, 2018 (1)
- [2] On b\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ b$$\end{document}-concatenations of two k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ k$$\end{document}-generalized Fibonacci numbers Acta Mathematica Hungarica, 2025, 175 (2) : 452 - 471
- [3] The Q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Q}}$$\end{document}-Korselt set of pq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm {pq}$$\end{document} Periodica Mathematica Hungarica, 2020, 81 (2) : 174 - 193
- [4] Generalized Fibonacci numbers of the form wx2+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$wx^{2}+1$$\end{document} Periodica Mathematica Hungarica, 2016, 73 (2) : 165 - 178
- [5] On the Diophantine equation yp=f(x)g(x)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${y^{p} = \frac{f(x)}{g(x)}}$$\end{document} Acta Mathematica Hungarica, 2019, 157 (1) : 1 - 9
- [6] A Pellian Equation with Primes and Applications to D(-1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D(-1)$$\end{document}-Quadruples Bulletin of the Malaysian Mathematical Sciences Society, 2019, 42 (5) : 2915 - 2926
- [7] Many solutions to the S-unit equation a+1=c\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$a + 1 = c$$\end{document} Acta Mathematica Hungarica, 2020, 160 (1) : 153 - 160
- [8] On solutions of the simultaneous Pell equations x2-a2-1y2=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ x^{2}-\left( a^{2}-1\right) y^{2}=1$$\end{document} and y2-pz2=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y^{2}-pz^{2}=1$$\end{document} Periodica Mathematica Hungarica, 2016, 73 (1) : 130 - 136
- [9] A family of elliptic curves with rank ≥5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ge 5$$\end{document} Periodica Mathematica Hungarica, 2015, 71 (2) : 243 - 249
- [10] On the Diophantine equation x2+C=yn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x^2+C=y^n$$\end{document} Indian Journal of Pure and Applied Mathematics, 2024, 55 (1) : 69 - 77