Machine learning methods for estimation the indicators of phosphogypsum influence in soil

被引:0
|
作者
Maria A. Pukalchik
Alexandr M. Katrutsa
Dmitry Shadrin
Vera A. Terekhova
Ivan V. Oseledets
机构
[1] Skolkovo Institute of Science and Technology,A.N. Severtsov Institute of Ecology and Evolution
[2] Russian Academy of Sciences,undefined
[3] M.V. Lomonosov Moscow State University,undefined
来源
关键词
Bioassay; Biological properties; Feature relevance; Machine learning; Pollution; Regression; Soil; Trace element; Waste;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:2265 / 2276
页数:11
相关论文
共 50 条
  • [21] Novel approach for soil classification using machine learning methods
    Manh Duc Nguyen
    Romulus Costache
    An Ho Sy
    Hassan Ahmadzadeh
    Hiep Van Le
    Indra Prakash
    Binh Thai Pham
    Bulletin of Engineering Geology and the Environment, 2022, 81
  • [22] IoT and Machine Learning Enabled Estimation of Health Indicators from Ambient Data
    Anicai, Cezar
    Shakir, Muhammad Zeeshan
    2023 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE, WCNC, 2023,
  • [23] Interpolation of Irregular Soil Moisture Measurements with Machine Learning Methods
    Cisty, Milan
    Cyprich, Frantisek
    Dezericky, David
    5TH WORLD MULTIDISCIPLINARY CIVIL ENGINEERING-ARCHITECTURE-URBAN PLANNING SYMPOSIUM (WMCAUS), 2020, 960
  • [24] Selecting appropriate machine learning methods for digital soil mapping
    Khaledian, Yones
    Miller, Bradley A.
    APPLIED MATHEMATICAL MODELLING, 2020, 81 (81) : 401 - 418
  • [25] Novel approach for soil classification using machine learning methods
    Manh Duc Nguyen
    Costache, Romulus
    An Ho Sy
    Ahmadzadeh, Hassan
    Hiep Van Le
    Prakash, Indra
    Binh Thai Pham
    BULLETIN OF ENGINEERING GEOLOGY AND THE ENVIRONMENT, 2022, 81 (11)
  • [26] Estimation of traffic dynamics models with machine-learning methods
    Antoniou, Constantinos
    Koutsopoulos, Haris N.
    TRAFFIC FLOW THEORY 2006, 2006, (1965): : 103 - 111
  • [27] Semiparametric efficient estimation of genetic relatedness with machine learning methods
    Xu Guo
    Hongwei Shi
    Weichao Yang
    Yiyuan Qian
    Niwen Zhou
    Statistics and Computing, 2025, 35 (3)
  • [28] Comparison of machine learning methods for copper ore grade estimation
    Bahram Jafrasteh
    Nader Fathianpour
    Alberto Suárez
    Computational Geosciences, 2018, 22 : 1371 - 1388
  • [29] Comparison of Machine Learning Methods for Software Project Effort Estimation
    Yurdakurban, Vehbi
    Erdogan, Nadia
    2018 26TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2018,
  • [30] Parallel Statistical and Machine Learning Methods for Estimation of Physical Load
    Stirenko, Sergii
    Gang, Peng
    Zeng, Wei
    Gordienko, Yuri
    Alienin, Oleg
    Rokovyi, Oleksandr
    Gordienko, Nikita
    Pavliuchenko, Ivan
    Rojbi, Anis
    ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, ICA3PP 2018, PT I, 2018, 11334 : 483 - 497