Characterization of hydroxyapatite-coated bacterial cellulose scaffold for bone tissue engineering

被引:0
|
作者
Sung-Jun Ahn
Young Min Shin
Se Eun Kim
Sung In Jeong
Jin-Oh Jeong
Jong-Seok Park
Hui-Jeong Gwon
Da Eun Seo
Young-Chang Nho
Seong Soo Kang
Chong-Yeal Kim
Jung-Bo Huh
Youn-Mook Lim
机构
[1] Korea Atomic Energy Research Institute,Research Division for Industry and Environment, Advanced Radiation Technology Institute
[2] Chonnam National University,College of Veterinary Medicine
[3] Chonbuk National University,Department of Radiation Science and Technology
[4] Dental Research Institute,Department of Prosthodontics, School of Dentistry, Pusan National University
关键词
bacterial cellulose; radiation; hydroxyapatite; bone tissue engineering;
D O I
暂无
中图分类号
学科分类号
摘要
The goal of this study was to develop a novel hydroxyapatite (HA) coated bacterial cellulose (BC) scaffold for bone tissue regeneration. HA-coated BC was prepared by immersing in 30 mL of 5× simulated body fluid at 37°C for 12 h. The resulting HA-coated BC scaffolds were characterized by scanning electron microscopy (SEM), attenuated total reflectance-Fourier transform infrared (ATRFTIR) spectroscopy, and thermal gravimetric analysis (TGA). HA spherical globules were newly formed on the surface of the BC, and a fibrous network of BC scaffolds still maintained their dimensions for cell adhesion and proliferation. ATR-FTIR spectroscopy analysis showed bands assigned to specific signals for phosphate and carbonate ions from HA. HA-coated BC scaffolds of thermal gravimetric analysis presented residue of around 25%. The ability for bone regeneration of HA-coated BC scaffolds was evaluated using a rat calvarial defect model for 4 and 8 weeks. After implantation, both BC and HAcoated BC scaffolds showed new bone formation derived from existing bone, and found new bone even inside the scaffold. Furthermore, a new bone area was signigicantly increased in the HA-coated BC scaffolds compared with those from BC scaffolds, and bone-like materials were frequently found in HA-coated BC scaffolds. Therefore, the HA-coated BC scaffolds can be used as an effective tool for bone tissue regeneration.
引用
收藏
页码:948 / 955
页数:7
相关论文
共 50 条
  • [21] Synthesis and Characterization of Hydroxyapatite-Silk Composite Scaffold for Bone Tissue Engineering
    Lin, Yen-Chih
    Teh, Thomas K. H.
    Goh, James C. H.
    CURRENT NANOSCIENCE, 2011, 7 (06) : 866 - 873
  • [22] Fabrication and characterization of a porous multidomain hydroxyapatite scaffold for bone tissue engineering investigations
    Buckley, Conor Timothy
    O'Kelly, Kevin Unai
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2010, 93B (02) : 459 - 467
  • [23] Characterization of a bovine collagen-hydroxyapatite composite scaffold for bone tissue engineering
    Rodrigues, C.V.M.
    Serricella, P.
    Linhares, A.B.R.
    Guerdes, R.M.
    Borojevic, R.
    Rossi, M.A.
    Duarte, M.E.L.
    Farina, M.
    Biomaterials, 1600, 27 (4987-4997):
  • [24] Characterization of a bovine collagen-hydroxyapatite composite scaffold for bone tissue engineering
    Rodrigues, CVM
    Serricella, P
    Linhares, ABR
    Guerdes, RM
    Borojevic, R
    Rossi, MA
    Duarte, MEL
    Farina, M
    BIOMATERIALS, 2003, 24 (27) : 4987 - 4997
  • [25] INTERFACE BETWEEN BONE TISSUE AND IMPLANTS OF SOLID HYDROXYAPATITE OR HYDROXYAPATITE-COATED TITANIUM IMPLANTS
    DELANGE, GL
    DONATH, K
    BIOMATERIALS, 1989, 10 (02) : 121 - 125
  • [26] Soft Tissue Integration of Hydroxyapatite-Coated Abutments for Bone Conduction Implants
    Larsson, Anna
    Andersson, Marcus
    Wigren, Stina
    Pivodic, Aldina
    Flynn, Mark
    Nannmark, Ulf
    CLINICAL IMPLANT DENTISTRY AND RELATED RESEARCH, 2015, 17 : E730 - E735
  • [27] A novel Polycaprolactone/Hydroxyapatite scaffold for bone tissue engineering
    Song, Ho-Hyun
    Yoo, Mi-Kyong
    Moon, Hyun-Seuk
    Choi, Yun-Jaie
    Lee, Hyun-Chul
    Cho, Chong-Su
    ASBM7: ADVANCED BIOMATERIALS VII, 2007, 342-343 : 265 - +
  • [28] Chitosan/hydroxyapatite hybrid scaffold for bone tissue engineering
    Brun, V.
    Guillaume, C.
    Alami, S. Mechiche
    Josse, J.
    Jing, J.
    Draux, F.
    Bouthors, S.
    Laurent-Maquin, D.
    Gangloff, S. C.
    Kerdjoudj, H.
    Velard, F.
    BIO-MEDICAL MATERIALS AND ENGINEERING, 2014, 24 : S63 - S73
  • [29] Study of Bacterial Cellulose as Scaffold on Cartilage Tissue Engineering
    Gea, Saharman
    Sari, Reka Mustika
    Piliang, Averroes Fazlurrahman
    Indrawan, Denny Pratama
    Hutapea, Yasir Arafat
    3RD INTERNATIONAL SEMINAR ON CHEMISTRY: GREEN CHEMISTRY AND ITS ROLE FOR SUSTAINABILITY, 2018, 2049
  • [30] Bacterial cellulose as a potential scaffold for tissue engineering of cartilage
    Svensson, A
    Nicklasson, E
    Harrah, T
    Panilaitis, B
    Kaplan, DL
    Brittberg, M
    Gatenholm, P
    BIOMATERIALS, 2005, 26 (04) : 419 - 431