“Ask Ernö”: a self-learning tool for assignment and prediction of nuclear magnetic resonance spectra

被引:0
作者
Andrés M. Castillo
Andrés Bernal
Reiner Dieden
Luc Patiny
Julien Wist
机构
[1] Universidad Nacional de Colombia,Facultad de Ingeniería
[2] Universidad del Valle,Chemistry Department
[3] Symrise,Analytical Research Center, R&T
[4] Ecole Polytechnique Fédérale de Lausanne, Flavors Division EAME
来源
Journal of Cheminformatics | / 8卷
关键词
Nuclear magnetic resonance; Automatic assignment; Chemical shift prediction; Peak-picking; Machine learning; HOSE codes;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] Nuclear magnetic resonance spectra of 119Sn and 125Te in SnTe and SnTe:Mn
    V. V. Slyn’ko
    E. I. Slyn’ko
    A. G. Khandozhko
    Yu. K. Vygranenko
    Semiconductors, 1997, 31 : 1021 - 1024
  • [32] Evidence for secondary ferromagnetic phases in the nuclear magnetic resonance spectra of GaMnAs epitaxial films and their nomina effect
    Hwang, T.
    Lee, S.
    Choi, H. K.
    Kim, Y. S.
    Park, Y. D.
    Chun, S. H.
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2008, 52 (02) : 396 - 401
  • [33] Cytotoxic Properties and Complete Nuclear Magnetic Resonance Assignment of Isolated Xanthones from the Root of Garcinia cowa Roxb.
    Wahyuni, Fatma Sri
    Shaari, Khozirah
    Stanslas, Johnson
    Lajisa, Nordin H. J.
    Hamidi, Dachriyanus
    PHARMACOGNOSY MAGAZINE, 2016, 12 (45) : S52 - S56
  • [34] Theory of damped quantum rotation in nuclear magnetic resonance spectra. III. Nuclear permutation symmetry of the line shape equation
    Szymanski, S.
    JOURNAL OF CHEMICAL PHYSICS, 2009, 131 (24)
  • [35] 1H-Nuclear Magnetic Resonance Analysis of Urine as Diagnostic Tool for Organic Acidemias and Aminoacidopathies
    Pulido, Ninna
    Guevara-Morales, Johana M.
    Rodriguez-Lopez, Alexander
    Pulido, Alvaro
    Diaz, Jhon
    Edrada-Ebel, Ru Angelie
    Echeverri-Pena, Olga Y.
    METABOLITES, 2021, 11 (12)
  • [36] Calculation of the effect of intrinsic point defects and volume swelling in the nuclear magnetic resonance spectra of ZrSiO4
    Pruneda, JM
    le Polles, L
    Farnan, I
    Trachenko, K
    Dove, MT
    Artacho, E
    MOLECULAR SIMULATION, 2005, 31 (05) : 349 - 354
  • [37] Magnetic Resonance-Guided Cancer Therapy Radiomics and Machine Learning Models for Response Prediction
    Fajemisin, Jesutofunmi Ayo
    Gonzalez, Glebys
    Rosenberg, Stephen A.
    Ullah, Ghanim
    Redler, Gage
    Latifi, Kujtim
    Moros, Eduardo G.
    El Naqa, Issam
    TOMOGRAPHY, 2024, 10 (09) : 1439 - 1454
  • [38] Machine learning with multiparametric magnetic resonance imaging of the breast for early prediction of response to neoadjuvant chemotherapy
    Lo Gullo, Roberto
    Eskreis-Winkler, Sarah
    Morris, Elizabeth A.
    Pinker, Katja
    BREAST, 2020, 49 : 115 - 122
  • [39] Machine learning prediction of brain metastasis invasion pattern on brain magnetic resonance imaging scans
    Najafian, Keyhan
    Rehany, Benjamin
    Nowakowski, Alexander
    Ghazimoghadam, Saba
    Pierre, Kevin
    Zakarian, Rita
    Al-Saadi, Tariq
    Reinhold, Caroline
    Babajani-Feremi, Abbas
    Wong, Joshua K.
    Guiot, Marie-Christine
    Lacasse, Marie-Constance
    Lam, Stephanie
    Siegel, Peter M.
    Petrecca, Kevin
    Dankner, Matthew
    Forghani, Reza
    NEURO-ONCOLOGY ADVANCES, 2024, 6 (01)
  • [40] Hydrogen-exchange kinetics studied through analysis of self-decoupling of nuclear magnetic resonance
    Nepravishta, Ridvan
    Yu, Binhan
    Iwahara, Junji
    JOURNAL OF MAGNETIC RESONANCE, 2020, 312