“Ask Ernö”: a self-learning tool for assignment and prediction of nuclear magnetic resonance spectra

被引:0
|
作者
Andrés M. Castillo
Andrés Bernal
Reiner Dieden
Luc Patiny
Julien Wist
机构
[1] Universidad Nacional de Colombia,Facultad de Ingeniería
[2] Universidad del Valle,Chemistry Department
[3] Symrise,Analytical Research Center, R&T
[4] Ecole Polytechnique Fédérale de Lausanne, Flavors Division EAME
来源
Journal of Cheminformatics | / 8卷
关键词
Nuclear magnetic resonance; Automatic assignment; Chemical shift prediction; Peak-picking; Machine learning; HOSE codes;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [21] Automatic classification of signal regions in 1H Nuclear Magnetic Resonance spectra
    Fischetti, Giulia
    Schmid, Nicolas
    Bruderer, Simon
    Caldarelli, Guido
    Scarso, Alessandro
    Henrici, Andreas
    Wilhelm, Dirk
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2023, 5
  • [22] High throughput prediction of chylomicron triglycerides in human plasma by nuclear magnetic resonance and chemometrics
    Francesco Savorani
    Mette Kristensen
    Flemming H Larsen
    Arne Astrup
    Søren B Engelsen
    Nutrition & Metabolism, 7
  • [23] Machine learning-based nuclear magnetic resonance measurements of hydraulic properties in hydrate-bearing sediments
    Li, Zikun
    Zhang, Zhun
    Dai, Sheng
    Liu, Zhichao
    Ning, Fulong
    OCEAN ENGINEERING, 2025, 315
  • [24] NUCLEAR-MAGNETIC-RESONANCE AND MASS-SPECTRA OF ORGANOMERCURY HYDRIDES AND DEUTERIDES .2.
    CRAIG, PJ
    GARRAUD, H
    LAURIE, SH
    MENNIE, D
    STOJAK, GH
    JOURNAL OF ORGANOMETALLIC CHEMISTRY, 1994, 468 (1-2) : 7 - 11
  • [25] Maize haploid recognition study based on nuclear magnetic resonance spectrum and manifold learning
    Ge, Wenzhang
    Li, Jinlong
    Wang, Yaqian
    Yu, Xiaoning
    An, Dong
    Chen, Shaojiang
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2020, 170
  • [26] Towards Rapid Prediction of Nuclear Magnetic Resonance-Based Bimodal Porosities: An Example from the Middle Eastern Carbonate Reservoir
    Mustafa, Ayyaz
    Tariq, Zeeshan
    Yan, Bicheng
    Han, Zhilei
    Iqbal, Arfa
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2025, 50 (07) : 4731 - 4751
  • [27] A fast method to infer Nuclear Magnetic Resonance based effective porosity in carbonate rocks using machine learning techniques
    Tariq, Zeeshan
    Gudala, Manojkumar
    Yan, Bicheng
    Sun, Shuyu
    Mahmoud, Mohamed
    GEOENERGY SCIENCE AND ENGINEERING, 2023, 222
  • [28] Research on the improvement of the diagnostic effect of machine learning on nuclear magnetic resonance of brain tumors
    Gao, Shuyan
    Xu, Jiaqi
    Lu, Weiheng
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2019, 37 (05) : 6315 - 6324
  • [29] Efficient Maximum Entropy Reconstruction of Nuclear Magnetic Resonance T1-T2 Spectra
    Chouzenoux, Emilie
    Moussaoui, Said
    Idier, Jerome
    Mariette, Francois
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (12) : 6040 - 6051
  • [30] Nuclear magnetic resonance spectra of Sn-119 and Te-125 in SnTe and SnTe:Mn
    Slynko, VV
    Slynko, EI
    Khandozhko, AG
    Vygranenko, YK
    SEMICONDUCTORS, 1997, 31 (10) : 1021 - 1024