Shape preserving widths of Sobolev-type classes ofs-monotone functions on a finite interval

被引:0
作者
V. N. Konovalov
D. Leviatan
机构
[1] National Academy of Sciences of Ukraine,Institute of Mathematics
[2] Tel Aviv University,School of Mathematical Sciences, Sackler Faculty of Exact Sciences
[3] University of South Carolina,IMI Department of Mathematics
来源
Israel Journal of Mathematics | 2003年 / 133卷
关键词
Finite Interval; Asymptotic Relation; Linear Manifold; Taylor Polynomial; Linear Width;
D O I
暂无
中图分类号
学科分类号
摘要
LetI be a finite interval andr ∈ ℕ. Denote by △+sLq the subset of all functionsy ∈Lq such that thes-difference △Tsy(·) is nonnegative onI, ∀τ>0. Further, denote by △+sWpr the class of functionsx onI with the seminorm ‖x(r)‖Lp≤1, such that △Tsx≥0, τ > 0, τ>0. Fors=3,…,r+1, we obtain two-sided estimates of the shape preserving widths\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$d_n \left( {\Delta _ + ^s W_p^r ,\Delta _ + ^s L_q } \right) = \begin{array}{*{20}c} {\inf } \\ {M^n \in M^n } \\ \end{array} \begin{array}{*{20}c} {\sup } \\ {x \in \Delta _ + ^s W_p^r } \\ \end{array} \begin{array}{*{20}c} {\inf } \\ {y \in M^n \cap \Delta _ + ^s L_q } \\ \end{array} \left\| {x - y} \right\|L_q $$ \end{document}, whereMn is the set of all linear manifoldsMn inLq, dimMn≤n, such thatMn ⋂△+sLq ≠ 0.
引用
收藏
页码:239 / 268
页数:29
相关论文
共 8 条
  • [1] Konovalov V. N.(1984)Estimates of diameters of Kolmogorov type for classes of differentiable periodic functions Matematicheskie Zametki 35 369-380
  • [2] Konovalov V. N.(2002)Kolmogorov and linear widths of weighted Sobolev-type classes on a finite interval Mathematical Analysis 28 251-278
  • [3] Leviatan D.(2001)Kolmogorov and linear widths of weighted Sobolev-type classes on a finite interval II Journal of Approximation Theory 113 266-297
  • [4] Konovalov V. N.(2001)Estimates on the approximation of 3-monotone functions by 3-monotone quadratic splines East Journal of Approximation 7 333-349
  • [5] Leviatan D.(1981)Orders of coapproximation of functions by algebraic polynomials Matematicheskie Zametki 29 117-130
  • [6] Konovalov V. N.(undefined)undefined undefined undefined undefined-undefined
  • [7] Leviatan D.(undefined)undefined undefined undefined undefined-undefined
  • [8] Shvedov A. S.(undefined)undefined undefined undefined undefined-undefined