A relation for general and inverse semigroups

被引:0
作者
M. Petrich
机构
[1] Uz Garmu,
来源
Acta Mathematica Hungarica | 2002年 / 97卷
关键词
relation; transitivity; quasi-separative semigroup; natural partial order; Bruck semigroup over a monoid; antisymmetry; inverse semigroup; subsemigroup;
D O I
暂无
中图分类号
学科分类号
摘要
The relation in the title is S defined by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$a\mathcal{S}b \Leftrightarrow a^2 = ab = ba$$ \end{document} on an arbitrary semigroup. We investigate antisymmetry of S by means of a (minimal) family Ϝ whose members can not appear as subsemigroups. Transitivity of S is characterized similarly by means of the family Ϝ and homomorphic images of a certain semigroup. We study the transfer of certain properties of a monoid T and the Bruck semigroup B(T,α) over T. The paper concludes with a consideration of certain properties of the relation S on inverse semigroups.
引用
收藏
页码:303 / 322
页数:19
相关论文
共 4 条
[1]  
Drazin M. P.(1986)A partial order in completely regular semigroups J. Algebra 98 362-374
[2]  
Mitsch H.(1986)A natural partial order for semigroups Proc. Amer. Math. Soc. 97 384-388
[3]  
Petrich M.(2001)Certain partial orders on semigroups Czechoslovak Math. J. 51 415-432
[4]  
Sussman I.(1958)A generalization of Boolean rings Math. Ann. 136 326-338