On the Number of Limit Cycles Bifurcating from the Linear Center with a Cubic Switching Curve

被引:0
作者
Ranran Jia
Liqin Zhao
机构
[1] Beijing Normal University,Laboratory of Mathematics and Complex Systems, School of Mathematical Sciences
[2] Ministry of Education,undefined
来源
Qualitative Theory of Dynamical Systems | 2024年 / 23卷
关键词
Limit cycle; Melnikov function; Piecewise smooth; Switching curve; ECT-system;
D O I
暂无
中图分类号
学科分类号
摘要
This paper studies the bifurcations of limit cycles from the system x˙=y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dot{x}}=y$$\end{document}, y˙=-x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\dot{y}}=-x$$\end{document} with the switching curve y=x3/3-x\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y = x^3/3-x$$\end{document} under the perturbations of arbitrary polynomials of x and y with degree n. We obtain the lower bound and upper bound of the maximum number of limit cycles bifurcating from h∈(0,3/2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$h\in (0,3/2)$$\end{document} if the first order Melnikov function is not identically 0. When the degree of perturbing terms is low, we obtain a precise result on the number of zeros of the first order Melnikov function. We also give an example to illustrate our result.
引用
收藏
相关论文
共 50 条
  • [1] On the Number of Limit Cycles Bifurcating from the Linear Center with a Cubic Switching Curve
    Jia, Ranran
    Zhao, Liqin
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (03)
  • [2] On the Number of Limit Cycles Bifurcating from the Linear Center with an Algebraic Switching Curve
    Jiaxin Wang
    Liqin Zhao
    Jinping Zhou
    Qualitative Theory of Dynamical Systems, 2022, 21
  • [3] On the Number of Limit Cycles Bifurcating from the Linear Center with an Algebraic Switching Curve
    Wang, Jiaxin
    Zhao, Liqin
    Zhou, Jinping
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2022, 21 (03)
  • [4] The Exact Bound of the Number of Limit Cycles Bifurcating from the Global Nilpotent Center with a Nonlinear Switching Curve
    Li, Zou
    Zhao, Liqin
    Wang, Jiaxin
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2022, 32 (02):
  • [5] The Number of Limit Cycles Bifurcating from a Quadratic Reversible Center
    Liang, Feng
    Liu, Yeqing
    Chen, Chong
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2021, 31 (13):
  • [6] MAXIMUM NUMBER OF LIMIT CYCLES BIFURCATING FROM THE PERIOD ANNULUS OF CUBIC POLYNOMIAL SYSTEMS
    Shi, Hongwei
    Bai, Yuzhen
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 151 (01) : 177 - 187
  • [7] The number of limit cycles bifurcating from the periodic orbits of an isochronous center
    Bey, Meryem
    Badi, Sabrina
    Fernane, Khairedine
    Makhlouf, Amar
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (03) : 821 - 829
  • [8] On the number of limit cycles bifurcating from a non-global degenerated center
    Gasull, Armengol
    Li, Chengzhi
    Liu, Changjian
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 329 (01) : 268 - 280
  • [9] An Improvement on the Number of Limit Cycles Bifurcating from a Nondegenerate Center of Homogeneous Polynomial Systems
    Yu, Pei
    Han, Maoan
    Li, Jibin
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2018, 28 (06):
  • [10] Limit Cycles Bifurcating from a Class of Cubic Hamiltonian Systems
    Chen, Yuanyuan
    Yu, Jiang
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2022, 32 (06):