Asymptotic results for solutions of a weighted p\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\varvec{p}}$$\end{document}-Laplacian evolution equation with Neumann boundary conditions

被引:0
作者
Alexander Nerlich
机构
[1] Ulm University,
关键词
Weighted ; -Laplacian evolution equation; Asymptotic results for nonlinear semigroups; Nonlocal diffusion; Neumann boundary conditions; Primary 35B40; Secondary 47H20;
D O I
10.1007/s00030-017-0468-4
中图分类号
学科分类号
摘要
The purpose of this paper is to investigate the time behavior of the solution of a weighted p-Laplacian evolution equation, given by 0.1ut=divγ|∇u|p-2∇uon(0,∞)×S,γ|∇u|p-2∇u·η=0on(0,∞)×∂S,u(0,·)=u0onS,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} {\left\{ \begin{array}{ll} u_{t} = \text {div} \left( \gamma |\nabla u|^{p-2}\nabla u \right) &{} \text {on } (0,\infty )\times S, \\ \gamma |\nabla u|^{p-2}\nabla u\cdot \eta =0 &{} \text {on } (0,\infty )\times \partial S, \\ u(0,\cdot )=u_{0} &{} \text {on } S,\end{array}\right. } \end{aligned}$$\end{document}where n∈N\{1}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n \in \mathbb {N}{\setminus } \{1\}$$\end{document}, p∈(1,∞)\{2}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \in (1,\infty ){\setminus } \{2\}$$\end{document}, S⊆Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S\subseteq \mathbb {R}^{n}$$\end{document} is an open, bounded and connected set of class C1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^{1}$$\end{document}, η\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\eta $$\end{document} is the unit outer normal on ∂S\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial S$$\end{document}, and γ:S→(0,∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma :S\rightarrow (0,\infty )$$\end{document} is a bounded function which can be extended to an Ap\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A_{p}$$\end{document}-Muckenhoupt weight on Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^{n}$$\end{document}. It will be proven that the solution of (0.1) converges in L1(S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^{1}(S)$$\end{document} to the average of the initial value u0∈L1(S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$u_{0} \in L^{1}(S)$$\end{document}. Moreover, a conservation of mass principle, an extinction principle and a decay rate for the solution will be derived.
引用
收藏
相关论文
共 20 条
[1]  
Andreu F(2011)Local and nonlocal weighted p-Laplacian evolution equations with Neumann boundary conditions Publ. Math. 55 27-66
[2]  
Mazón JM(1997)Quasi-linear elliptic and parabolic equations in Adv. Math. Sci. Appl. 7 183-213
[3]  
Rossi J(1995) with nonlinear boundary conditions Ann. Sc. Norm. Super. 22 241-273
[4]  
Toledo J(2013)An Int. J. Nonlinear Sci. 14 323-337
[5]  
Andreu F(2013)-theory of existence and uniqueness of solutions of nonlinear elliptic equations Math. Aeterna 3 579-591
[6]  
Mazón JM(1994)Mathematical models for erosion and the optimal transportation of sediment Ann. Acad. Sci. Fenn. Ser. A. I. Math. 19 95-113
[7]  
Segura de León S(undefined)Extinction properties of solutions for a p-Laplacian evolution equation with nonlinear source and strong absorption undefined undefined undefined-undefined
[8]  
Toledo J(undefined)Weighted Sobolev spaces and capacity undefined undefined undefined-undefined
[9]  
Bénilan P(undefined)undefined undefined undefined undefined-undefined
[10]  
Boccardo L(undefined)undefined undefined undefined undefined-undefined