Oscillation of solutions of nonlinear partial differential equations of neutral type

被引:36
作者
Yu Yuanhong
Liu Bin
Liu Zhengrong
机构
[1] Academia Sinica,Institute of Applied Mathematics
[2] Hubei Normal College,Department of Mathematics
[3] Yunnan University,Department of Mathematics
[4] Institute of Applied Mathematics of Yunnan Province,undefined
关键词
Oscillation; Neutral type; Partial differential equation; 35B05; 35L99; O175.2;
D O I
10.1007/BF02559950
中图分类号
学科分类号
摘要
In this paper, we deal with the oscillatory behavior of solutions of the neutral partial differential equation of the form\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{gathered} \frac{\partial }{{\partial t}}\left[ {p\left( t \right)\frac{\partial }{{\partial t}}(u\left( {x,t} \right) + \sum\limits_{i = 1}^t {p_i \left( t \right)u\left( {x,t - \tau _i } \right)} )} \right] + q\left( {x,t} \right)f_j (u(x,\sigma _j (t))) \hfill \\ = a\left( t \right)\Delta u\left( {x,t} \right) + \sum\limits_{k = 1}^n {a_k \left( t \right)} \Delta u\left( {x,\rho _k \left( t \right)} \right), \left( {x,t} \right) \in \Omega \times R_ + \equiv G \hfill \\ \end{gathered} $$ \end{document} where Δ is the Laplacian in EuclideanN-spaceRN, R+=(0, ∞) and Ω is a bounded domain inRN with a piecewise smooth boundary δΩ.
引用
收藏
页码:563 / 570
页数:7
相关论文
共 50 条
[41]   Oscillation of Neutral Partial Dynamic Equations [J].
Ucar, Deniz ;
Bolat, Yasar .
APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2012, 7 (01) :201-210
[42]   OSCILLATION AND EXISTENCE OF POSITIVE SOLUTIONS FOR NEUTRAL DIFFERENTIAL EQUATIONS [J].
申建华 .
ANNALSOFDIFFERENTIALEQUATIONS, 1996, (02) :191-200
[43]   Neutral Delay Differential Equations: Oscillation Conditions for the Solutions [J].
Bazighifan, Omar ;
Alotaibi, Hammad ;
Mousa, Abd Allaah A. .
SYMMETRY-BASEL, 2021, 13 (01) :1-11
[44]   Equivalence Transformation for Neutral Differential Equations: Oscillation of Solutions [J].
Zafer, Agacik ;
Candan, Tuncay ;
Guerkan, Zeynep Nilhan .
MATHEMATICS, 2025, 13 (14)
[45]   Oscillation of the solutions of,parabolic equations with nonlinear neutral terms [J].
Shoukaku, Yutaka .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 326 (01) :556-569
[46]   Interval oscillation criteria for second order neutral nonlinear differential equations [J].
Zhuang, RK ;
Li, WT .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 157 (01) :39-51
[47]   Oscillation for systems of higher-order neutral type delay partial differential equations [J].
Lin, WX .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 156 (01) :107-114
[48]   A note on oscillation for systems of high order quasilinear partial differential equations of neutral type [J].
Lin, WX .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 156 (02) :563-576
[49]   OSCILLATION OF SOLUTIONS TO NEUTRAL NONLINEAR IMPULSIVE HYPERBOLIC EQUATIONS WITH SEVERAL DELAYS [J].
Yang, Jichen ;
Liu, Anping ;
Liu, Guangjie .
ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2013,
[50]   On the oscillation and asymptotic behavior of solutions of third order nonlinear differential equations with mixed nonlinear neutral terms [J].
Salem, Shaimaa ;
El-Sheikh, Mohamed M. A. ;
Hassan, Ahmed M. .
TURKISH JOURNAL OF MATHEMATICS, 2024, 48 (02) :221-247