Oscillation of solutions of nonlinear partial differential equations of neutral type

被引:36
作者
Yu Yuanhong
Liu Bin
Liu Zhengrong
机构
[1] Academia Sinica,Institute of Applied Mathematics
[2] Hubei Normal College,Department of Mathematics
[3] Yunnan University,Department of Mathematics
[4] Institute of Applied Mathematics of Yunnan Province,undefined
关键词
Oscillation; Neutral type; Partial differential equation; 35B05; 35L99; O175.2;
D O I
10.1007/BF02559950
中图分类号
学科分类号
摘要
In this paper, we deal with the oscillatory behavior of solutions of the neutral partial differential equation of the form\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{gathered} \frac{\partial }{{\partial t}}\left[ {p\left( t \right)\frac{\partial }{{\partial t}}(u\left( {x,t} \right) + \sum\limits_{i = 1}^t {p_i \left( t \right)u\left( {x,t - \tau _i } \right)} )} \right] + q\left( {x,t} \right)f_j (u(x,\sigma _j (t))) \hfill \\ = a\left( t \right)\Delta u\left( {x,t} \right) + \sum\limits_{k = 1}^n {a_k \left( t \right)} \Delta u\left( {x,\rho _k \left( t \right)} \right), \left( {x,t} \right) \in \Omega \times R_ + \equiv G \hfill \\ \end{gathered} $$ \end{document} where Δ is the Laplacian in EuclideanN-spaceRN, R+=(0, ∞) and Ω is a bounded domain inRN with a piecewise smooth boundary δΩ.
引用
收藏
页码:563 / 570
页数:7
相关论文
共 50 条
[31]   Oscillation of solutions of neutral differential equations with a superlinear neutral term [J].
Lin, Xiaoyan ;
Tang, X. H. .
APPLIED MATHEMATICS LETTERS, 2007, 20 (09) :1016-1022
[32]   Oscillation of solutions of neutral difference equations with a nonlinear neutral term [J].
Lin, Xiaoyan .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2006, 52 (3-4) :439-448
[33]   New kamenev-type oscillation criteria for second order neutral nonlinear differential equations [J].
Xu, Run ;
Meng, Fanwei .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 188 (02) :1364-1370
[34]   Oscillation of higher-order neutral partial functional differential equations [J].
Li, WN ;
Debnath, L .
APPLIED MATHEMATICS LETTERS, 2003, 16 (04) :525-530
[35]   Oscillation for Certain Even Order Neutral Partial Functional Differential Equations [J].
Lin, Wen-Xian .
PROCEEDINGS OF FIRST INTERNATIONAL CONFERENCE OF MODELLING AND SIMULATION, VOL II: MATHEMATICAL MODELLING, 2008, :86-89
[36]   Oscillation of second order nonlinear neutral differential equations [J].
Jiang, JC ;
Li, XP .
APPLIED MATHEMATICS AND COMPUTATION, 2003, 135 (2-3) :531-540
[38]   Oscillation of solutions for a class of nonlinear neutral parabolic differential equations boundary value problem [J].
Wang, PG .
APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2000, 21 (05) :585-590
[39]   Oscillation of solutions for a class of nonlinear neutral parabolic differential equations boundary value problem [J].
Peiguang W. .
Applied Mathematics and Mechanics, 2000, 21 (5) :585-590
[40]   OSCILLATION PROPERTIES OF SOLUTIONS OF FRACTIONAL NEUTRAL DIFFERENTIAL EQUATIONS [J].
Adiguzel, Hakan .
THERMAL SCIENCE, 2019, 23 :S175-S183