Oscillation of solutions of nonlinear partial differential equations of neutral type

被引:34
作者
Yu Yuanhong
Liu Bin
Liu Zhengrong
机构
[1] Academia Sinica,Institute of Applied Mathematics
[2] Hubei Normal College,Department of Mathematics
[3] Yunnan University,Department of Mathematics
[4] Institute of Applied Mathematics of Yunnan Province,undefined
关键词
Oscillation; Neutral type; Partial differential equation; 35B05; 35L99; O175.2;
D O I
10.1007/BF02559950
中图分类号
学科分类号
摘要
In this paper, we deal with the oscillatory behavior of solutions of the neutral partial differential equation of the form\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{gathered} \frac{\partial }{{\partial t}}\left[ {p\left( t \right)\frac{\partial }{{\partial t}}(u\left( {x,t} \right) + \sum\limits_{i = 1}^t {p_i \left( t \right)u\left( {x,t - \tau _i } \right)} )} \right] + q\left( {x,t} \right)f_j (u(x,\sigma _j (t))) \hfill \\ = a\left( t \right)\Delta u\left( {x,t} \right) + \sum\limits_{k = 1}^n {a_k \left( t \right)} \Delta u\left( {x,\rho _k \left( t \right)} \right), \left( {x,t} \right) \in \Omega \times R_ + \equiv G \hfill \\ \end{gathered} $$ \end{document} where Δ is the Laplacian in EuclideanN-spaceRN, R+=(0, ∞) and Ω is a bounded domain inRN with a piecewise smooth boundary δΩ.
引用
收藏
页码:563 / 570
页数:7
相关论文
共 50 条
  • [21] On Oscillation of Solutions of Forced Nonlinear Neutral Differential Equations of Higher Order
    N. Parhi
    R. N. Rath
    Czechoslovak Mathematical Journal, 2003, 53 : 805 - 825
  • [22] On the oscillation of fractional Emden–Fowler type neutral partial differential equations
    V. Sadhasivam
    J. Kavitha
    The Journal of Analysis, 2019, 27 : 741 - 759
  • [23] Oscillation criteria for second order nonlinear differential equations of neutral type
    Gai M.
    Shi B.
    Zhang D.
    Applied Mathematics-A Journal of Chinese Universities, 2001, 16 (2) : 122 - 126
  • [24] OSCILLATION CRITERIA FOR SECOND ORDER NONLINEAR DIFFERENTIAL EQUATIONS OF NEUTRAL TYPE
    Gai Mingjiu Shi Bao Zhang DecunDept.ofBasicSciences
    AppliedMathematics:AJournalofChineseUniversities, 2001, (02) : 122 - 126
  • [25] Oscillation of nonlinear neutral delay differential equations
    Elabbasy E.M.
    Hassan T.S.
    Saker S.H.
    Journal of Applied Mathematics and Computing, 2006, 21 (1-2) : 99 - 118
  • [26] On the Oscillation of Solutions of Differential Equations with Neutral Term
    Mofarreh, Fatemah
    Almutairi, Alanoud
    Bazighifan, Omar
    Aiyashi, Mohammed A.
    Vilcu, Alina-Daniela
    MATHEMATICS, 2021, 9 (21)
  • [27] Oscillation of solutions of neutral delay differential equations
    Dib, KA
    Mathsen, RM
    MATHEMATICAL AND COMPUTER MODELLING, 2000, 32 (5-6) : 609 - 619
  • [28] OSCILLATION OF SOLUTIONS TO ODD-ORDER NONLINEAR NEUTRAL FUNCTIONAL DIFFERENTIAL EQUATIONS
    Li, Tongxing
    Thandapani, Ethiraju
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2011,
  • [29] Nonlinear Neutral Delay Differential Equations of Fourth-Order: Oscillation of Solutions
    Agarwal, Ravi P.
    Bazighifan, Omar
    Ragusa, Maria Alessandra
    ENTROPY, 2021, 23 (02) : 1 - 10
  • [30] On the oscillation of fractional Emden-Fowler type neutral partial differential equations
    Sadhasivam, V.
    Kavitha, J.
    JOURNAL OF ANALYSIS, 2019, 27 (03) : 741 - 759