共 50 条
Oscillation of solutions of nonlinear partial differential equations of neutral type
被引:34
|作者:
Yu Yuanhong
Liu Bin
Liu Zhengrong
机构:
[1] Academia Sinica,Institute of Applied Mathematics
[2] Hubei Normal College,Department of Mathematics
[3] Yunnan University,Department of Mathematics
[4] Institute of Applied Mathematics of Yunnan Province,undefined
关键词:
Oscillation;
Neutral type;
Partial differential equation;
35B05;
35L99;
O175.2;
D O I:
10.1007/BF02559950
中图分类号:
学科分类号:
摘要:
In this paper, we deal with the oscillatory behavior of solutions of the neutral partial differential equation of the form\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$$\begin{gathered} \frac{\partial }{{\partial t}}\left[ {p\left( t \right)\frac{\partial }{{\partial t}}(u\left( {x,t} \right) + \sum\limits_{i = 1}^t {p_i \left( t \right)u\left( {x,t - \tau _i } \right)} )} \right] + q\left( {x,t} \right)f_j (u(x,\sigma _j (t))) \hfill \\ = a\left( t \right)\Delta u\left( {x,t} \right) + \sum\limits_{k = 1}^n {a_k \left( t \right)} \Delta u\left( {x,\rho _k \left( t \right)} \right), \left( {x,t} \right) \in \Omega \times R_ + \equiv G \hfill \\ \end{gathered} $$
\end{document} where Δ is the Laplacian in EuclideanN-spaceRN, R+=(0, ∞) and Ω is a bounded domain inRN with a piecewise smooth boundary δΩ.
引用
收藏
页码:563 / 570
页数:7
相关论文