Oscillation of solutions of nonlinear partial differential equations of neutral type

被引:34
|
作者
Yu Yuanhong
Liu Bin
Liu Zhengrong
机构
[1] Academia Sinica,Institute of Applied Mathematics
[2] Hubei Normal College,Department of Mathematics
[3] Yunnan University,Department of Mathematics
[4] Institute of Applied Mathematics of Yunnan Province,undefined
关键词
Oscillation; Neutral type; Partial differential equation; 35B05; 35L99; O175.2;
D O I
10.1007/BF02559950
中图分类号
学科分类号
摘要
In this paper, we deal with the oscillatory behavior of solutions of the neutral partial differential equation of the form\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\begin{gathered} \frac{\partial }{{\partial t}}\left[ {p\left( t \right)\frac{\partial }{{\partial t}}(u\left( {x,t} \right) + \sum\limits_{i = 1}^t {p_i \left( t \right)u\left( {x,t - \tau _i } \right)} )} \right] + q\left( {x,t} \right)f_j (u(x,\sigma _j (t))) \hfill \\ = a\left( t \right)\Delta u\left( {x,t} \right) + \sum\limits_{k = 1}^n {a_k \left( t \right)} \Delta u\left( {x,\rho _k \left( t \right)} \right), \left( {x,t} \right) \in \Omega \times R_ + \equiv G \hfill \\ \end{gathered} $$ \end{document} where Δ is the Laplacian in EuclideanN-spaceRN, R+=(0, ∞) and Ω is a bounded domain inRN with a piecewise smooth boundary δΩ.
引用
收藏
页码:563 / 570
页数:7
相关论文
共 50 条