Communications in Mathematical Physics
|
2020年
/
374卷
关键词:
D O I:
暂无
中图分类号:
学科分类号:
摘要:
We introduce the concept of a holomorphic field theory on any complex manifold in the language of the Batalin–Vilkovisky formalism. When the complex dimension is one, this setting agrees with that of chiral conformal field theory. Our main result concerns the behavior of holomorphic theories under renormalization group flow. Namely, we show that holomorphic theories are one-loop finite. We use this to completely characterize holomorphic anomalies in any dimension. Throughout, we compare our approach to holomorphic field theories to more familiar approaches including that of supersymmetric field theories.
机构:
Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USAUniv Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
Tener, James E.
Wang, Zhenghan
论文数: 0引用数: 0
h-index: 0
机构:
Microsoft Stn Q, Santa Barbara, CA 93106 USA
Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USAUniv Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
机构:
Univ Massachusetts Amherst, Dept Math & Stat, Lederle Grad Res Tower,1623D, Amherst, MA 01003 USAUniv Massachusetts Amherst, Dept Math & Stat, Lederle Grad Res Tower,1623D, Amherst, MA 01003 USA
Gwilliam, Owen
Rabinovich, Eugene
论文数: 0引用数: 0
h-index: 0
机构:
Univ Notre Dame, Dept Math, Notre Dame, IN 46556 USAUniv Massachusetts Amherst, Dept Math & Stat, Lederle Grad Res Tower,1623D, Amherst, MA 01003 USA
Rabinovich, Eugene
Williams, Brian R.
论文数: 0引用数: 0
h-index: 0
机构:
Boston Univ, Dept Math & Stat, Boston, MA 02215 USAUniv Massachusetts Amherst, Dept Math & Stat, Lederle Grad Res Tower,1623D, Amherst, MA 01003 USA