Superconvergence of a Finite Element Method for the Multi-term Time-Fractional Diffusion Problem

被引:2
|
作者
Chaobao Huang
Martin Stynes
机构
[1] Shandong University of Finance and Economics,School of Mathematics and Quantitative Economics
[2] Beijing Computational Science Research Center,Applied and Computational Mathematics Division
[3] Beijing Computational Science Research Center,Applied and Computational Mathematics Division
来源
Journal of Scientific Computing | 2020年 / 82卷
关键词
Multiterm time-fractional; Finite element method; Gronwall inequality; Superconvergence; Caputo derivative; 65M60; 65M12; 35R11;
D O I
暂无
中图分类号
学科分类号
摘要
A time-fractional initial-boundary value problem is considered, where the differential equation has a sum of fractional derivatives of different orders, and the spatial domain lies in Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^d$$\end{document} with d∈{1,2,3}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\in \{1,2,3\}$$\end{document}. A priori bounds on the solution and its derivatives are stated; these show that typical solutions have a weak singularity at the initial time t=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t=0$$\end{document}. A standard finite element method with mapped piecewise bilinears is used to discretise the spatial derivatives, while for each time derivative we use the L1 scheme on a temporal graded mesh. Our analysis reveals the optimal grading that one should use for this mesh. A novel discrete fractional Gronwall inequality is proved: the statement of this inequality and its proof are different from any previously published Gronwall inequality. This inequality is used to derive an optimal error estimate in L∞(H1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\infty (H^1)$$\end{document}. It is also used to show that, if each mesh element is rectangular in the case d=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=2$$\end{document} or cubical in the case d=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=3$$\end{document}, with the sides of the element parallel to the coordinate axes, then a simple postprocessing of the computed solution will yield a higher order of convergence in the spatial direction. Numerical results are presented to show the sharpness of our theoretical results.
引用
收藏
相关论文
共 50 条
  • [41] Stability of a finite volume element method for the time-fractional advection-diffusion equation
    Badr, M.
    Yazdani, A.
    Jafari, H.
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2018, 34 (05) : 1459 - 1471
  • [42] A characteristic finite element method for the time-fractional mobile/immobile advection diffusion model
    Huan Liu
    Xiangcheng Zheng
    Chuanjun Chen
    Hong Wang
    Advances in Computational Mathematics, 2021, 47
  • [43] A characteristic finite element method for the time-fractional mobile/immobile advection diffusion model
    Liu, Huan
    Zheng, Xiangcheng
    Chen, Chuanjun
    Wang, Hong
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2021, 47 (03)
  • [44] Convergence and superconvergence analysis of finite element methods for the time fractional diffusion equation
    Li, Meng
    Shi, Dongyang
    Pei, Lifang
    APPLIED NUMERICAL MATHEMATICS, 2020, 151 : 141 - 160
  • [45] Longtime behavior of semilinear multi-term fractional in time diffusion
    Vasylyeva, Nataliya
    JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2024, 10 (01) : 559 - 593
  • [46] High-order compact finite difference method for the multi-term time fractional mixed diffusion and diffusion-wave equation
    Yu, Bo
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (08) : 6526 - 6539
  • [47] A Novel Error Analysis of Spectral Method for the Anomalous Subdiffusion Problems with Multi-term Time-fractional Derivative
    Tang, Bo
    Chen, Yan-ping
    Xie, Bin
    Lin, Xiu-xiu
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2023, 39 (04): : 943 - 961
  • [48] Initial-boundary value problems for multi-term time-fractional diffusion equations with positive constant coefficients
    Li, Zhiyuan
    Liu, Yikan
    Yamamoto, Masahiro
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 257 : 381 - 397
  • [49] A Superconvergent Nonconforming Mixed FEM for Multi-Term Time-Fractional Mixed Diffusion and Diffusion-Wave Equations with Variable Coefficients
    Fan, Huijun
    Zhao, Yanmin
    Wang, Fenling
    Shi, Yanhua
    Tang, Yifa
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2021, 11 (01) : 63 - 92
  • [50] Time second-order finite difference/finite element algorithm for nonlinear time-fractional diffusion problem with fourth-order derivative term
    Liu, Nan
    Liu, Yang
    Li, Hong
    Wang, Jinfeng
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 75 (10) : 3521 - 3536