Superconvergence of a Finite Element Method for the Multi-term Time-Fractional Diffusion Problem

被引:2
|
作者
Chaobao Huang
Martin Stynes
机构
[1] Shandong University of Finance and Economics,School of Mathematics and Quantitative Economics
[2] Beijing Computational Science Research Center,Applied and Computational Mathematics Division
[3] Beijing Computational Science Research Center,Applied and Computational Mathematics Division
来源
关键词
Multiterm time-fractional; Finite element method; Gronwall inequality; Superconvergence; Caputo derivative; 65M60; 65M12; 35R11;
D O I
暂无
中图分类号
学科分类号
摘要
A time-fractional initial-boundary value problem is considered, where the differential equation has a sum of fractional derivatives of different orders, and the spatial domain lies in Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^d$$\end{document} with d∈{1,2,3}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\in \{1,2,3\}$$\end{document}. A priori bounds on the solution and its derivatives are stated; these show that typical solutions have a weak singularity at the initial time t=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t=0$$\end{document}. A standard finite element method with mapped piecewise bilinears is used to discretise the spatial derivatives, while for each time derivative we use the L1 scheme on a temporal graded mesh. Our analysis reveals the optimal grading that one should use for this mesh. A novel discrete fractional Gronwall inequality is proved: the statement of this inequality and its proof are different from any previously published Gronwall inequality. This inequality is used to derive an optimal error estimate in L∞(H1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\infty (H^1)$$\end{document}. It is also used to show that, if each mesh element is rectangular in the case d=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=2$$\end{document} or cubical in the case d=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=3$$\end{document}, with the sides of the element parallel to the coordinate axes, then a simple postprocessing of the computed solution will yield a higher order of convergence in the spatial direction. Numerical results are presented to show the sharpness of our theoretical results.
引用
收藏
相关论文
共 50 条
  • [31] A Novel Accurate Method for Multi-Term Time-Fractional Nonlinear Diffusion Equations in Arbitrary Domains
    Hu, Tao
    Huang, Cheng
    Reutskiy, Sergiy
    Lu, Jun
    Lin, Ji
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2024, 138 (02): : 1521 - 1548
  • [32] Identification of the time-dependent source term in a multi-term time-fractional diffusion equation
    Li, Y. S.
    Sun, L. L.
    Zhang, Z. Q.
    Wei, T.
    NUMERICAL ALGORITHMS, 2019, 82 (04) : 1279 - 1301
  • [33] ANISOTROPIC EQROT 1 FINITE ELEMENT APPROXIMATION FOR A MULTI-TERM TIME-FRACTIONAL MIXED SUB-DIFFUSION AND DIFFUSION-WAVE EQUATION
    Fan, Huijun
    Zhao, Yanmin
    Wang, Fenling
    Shi, Yanhua
    Liu, Fawang
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2023, 41 (03): : 439 - 440
  • [34] A STRONG POSITIVITY PROPERTY AND A RELATED INVERSE SOURCE PROBLEM FOR MULTI-TERM TIME-FRACTIONAL DIFFUSION EQUATIONS
    胡利
    李志远
    杨晓娜
    Acta Mathematica Scientia, 2024, 44 (05) : 2019 - 2040
  • [35] Generic Well-posedness for an Inverse Source Problem for a Multi-term Time-fractional Diffusion Equation
    Li, Zhiyuan
    Cheng, Xing
    Liu, Yikan
    TAIWANESE JOURNAL OF MATHEMATICS, 2020, 24 (04): : 1005 - 1020
  • [36] A strong positivity property and a related inverse source problem for multi-term time-fractional diffusion equations
    Hu, Li
    Li, Zhiyuan
    Yang, Xiaona
    ACTA MATHEMATICA SCIENTIA, 2024, 44 (05) : 2019 - 2040
  • [37] OPTIMAL INITIAL VALUE CONTROL FOR THE MULTI-TERM TIME-FRACTIONAL DIFFUSION EQUATION
    Veklych, R. A.
    Semenov, V. V.
    Lyashko, S. I.
    PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY, 2016, (06): : 100 - 103
  • [38] Recovering the temperature distribution for multi-term time-fractional sideways diffusion equations
    Khieu, Tran Thi
    COMPUTATIONAL & APPLIED MATHEMATICS, 2024, 43 (04):
  • [39] Subordination approach to multi-term time-fractional diffusion-wave equations
    Bazhlekova, Emilia
    Bazhlekov, Ivan
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 339 : 179 - 192
  • [40] Finite difference/finite element method for a novel 2D multi-term time-fractional mixed sub-diffusion and diffusion-wave equation on convex domains
    Feng, Libo
    Liu, Fawang
    Turner, Ian
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 70 : 354 - 371