Superconvergence of a Finite Element Method for the Multi-term Time-Fractional Diffusion Problem

被引:2
|
作者
Chaobao Huang
Martin Stynes
机构
[1] Shandong University of Finance and Economics,School of Mathematics and Quantitative Economics
[2] Beijing Computational Science Research Center,Applied and Computational Mathematics Division
[3] Beijing Computational Science Research Center,Applied and Computational Mathematics Division
来源
关键词
Multiterm time-fractional; Finite element method; Gronwall inequality; Superconvergence; Caputo derivative; 65M60; 65M12; 35R11;
D O I
暂无
中图分类号
学科分类号
摘要
A time-fractional initial-boundary value problem is considered, where the differential equation has a sum of fractional derivatives of different orders, and the spatial domain lies in Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^d$$\end{document} with d∈{1,2,3}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\in \{1,2,3\}$$\end{document}. A priori bounds on the solution and its derivatives are stated; these show that typical solutions have a weak singularity at the initial time t=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t=0$$\end{document}. A standard finite element method with mapped piecewise bilinears is used to discretise the spatial derivatives, while for each time derivative we use the L1 scheme on a temporal graded mesh. Our analysis reveals the optimal grading that one should use for this mesh. A novel discrete fractional Gronwall inequality is proved: the statement of this inequality and its proof are different from any previously published Gronwall inequality. This inequality is used to derive an optimal error estimate in L∞(H1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\infty (H^1)$$\end{document}. It is also used to show that, if each mesh element is rectangular in the case d=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=2$$\end{document} or cubical in the case d=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=3$$\end{document}, with the sides of the element parallel to the coordinate axes, then a simple postprocessing of the computed solution will yield a higher order of convergence in the spatial direction. Numerical results are presented to show the sharpness of our theoretical results.
引用
收藏
相关论文
共 50 条
  • [21] Superconvergence analysis of an H1-Galerkin mixed finite element method for two-dimensional multi-term time fractional diffusion equations
    Shi, Zhengguang
    Zhao, Yanmin
    Tang, Yifa
    Wang, Fenling
    Shi, Yanhua
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2018, 95 (09) : 1845 - 1857
  • [22] A Legendre spectral quadrature tau method for the multi-term time-fractional diffusion equations
    Zaky, Mahmoud A.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (03): : 3525 - 3538
  • [23] Superconvergence analysis of a two-grid finite element method for nonlinear time-fractional diffusion equations
    Gu, Qiling
    Chen, Yanping
    Huang, Yunqing
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (08):
  • [24] STOCHASTIC MODEL FOR MULTI-TERM TIME-FRACTIONAL DIFFUSION EQUATIONS WITH NOISE
    Hosseini, Vahid Reza
    Remazani, Mohamad
    Zou, Wennan
    Banihashemi, Seddigheh
    THERMAL SCIENCE, 2021, 25 (SpecialIssue 2): : S287 - S293
  • [25] Superconvergence analysis of a two-grid finite element method for nonlinear time-fractional diffusion equations
    Qiling Gu
    Yanping Chen
    Yunqing Huang
    Computational and Applied Mathematics, 2022, 41
  • [26] Inverse source problem for multi-term time-fractional diffusion equation with nonlocal boundary conditions
    Derbissaly, Bauyrzhan
    Sadybekov, Makhmud
    AIMS MATHEMATICS, 2024, 9 (04): : 9969 - 9988
  • [27] A weak Galerkin finite element method on temporal graded meshes for the multi-term time fractional diffusion equations
    Toprakseven, Suayip
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2022, 128 : 108 - 120
  • [28] Simultaneous inversion of the potential term and the fractional orders in a multi-term time-fractional diffusion equation
    Sun, L. L.
    Li, Y. S.
    Zhang, Y.
    INVERSE PROBLEMS, 2021, 37 (05)
  • [29] A fast linearized finite difference method for the nonlinear multi-term time-fractional wave equation
    Lyu, Pin
    Liang, Yuxiang
    Wang, Zhibo
    APPLIED NUMERICAL MATHEMATICS, 2020, 151 : 448 - 471
  • [30] Identification of the time-dependent source term in a multi-term time-fractional diffusion equation
    Y. S. Li
    L. L. Sun
    Z. Q. Zhang
    T. Wei
    Numerical Algorithms, 2019, 82 : 1279 - 1301