Superconvergence of a Finite Element Method for the Multi-term Time-Fractional Diffusion Problem

被引:2
|
作者
Chaobao Huang
Martin Stynes
机构
[1] Shandong University of Finance and Economics,School of Mathematics and Quantitative Economics
[2] Beijing Computational Science Research Center,Applied and Computational Mathematics Division
[3] Beijing Computational Science Research Center,Applied and Computational Mathematics Division
来源
Journal of Scientific Computing | 2020年 / 82卷
关键词
Multiterm time-fractional; Finite element method; Gronwall inequality; Superconvergence; Caputo derivative; 65M60; 65M12; 35R11;
D O I
暂无
中图分类号
学科分类号
摘要
A time-fractional initial-boundary value problem is considered, where the differential equation has a sum of fractional derivatives of different orders, and the spatial domain lies in Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^d$$\end{document} with d∈{1,2,3}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\in \{1,2,3\}$$\end{document}. A priori bounds on the solution and its derivatives are stated; these show that typical solutions have a weak singularity at the initial time t=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t=0$$\end{document}. A standard finite element method with mapped piecewise bilinears is used to discretise the spatial derivatives, while for each time derivative we use the L1 scheme on a temporal graded mesh. Our analysis reveals the optimal grading that one should use for this mesh. A novel discrete fractional Gronwall inequality is proved: the statement of this inequality and its proof are different from any previously published Gronwall inequality. This inequality is used to derive an optimal error estimate in L∞(H1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\infty (H^1)$$\end{document}. It is also used to show that, if each mesh element is rectangular in the case d=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=2$$\end{document} or cubical in the case d=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=3$$\end{document}, with the sides of the element parallel to the coordinate axes, then a simple postprocessing of the computed solution will yield a higher order of convergence in the spatial direction. Numerical results are presented to show the sharpness of our theoretical results.
引用
收藏
相关论文
共 50 条
  • [21] Strong maximum principle for multi-term time-fractional diffusion equations and its application to an inverse source problem
    Liu, Yikan
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 73 (01) : 96 - 108
  • [22] Numerical methods for solving the multi-term time-fractional wave-diffusion equation
    Liu, Fawang
    Meerschaert, Mark M.
    McGough, Robert J.
    Zhuang, Pinghui
    Liu, Qingxia
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2013, 16 (01) : 9 - 25
  • [23] Numerical methods for solving the multi-term time-fractional wave-diffusion equation
    Fawang Liu
    Mark M. Meerschaert
    Robert J. McGough
    Pinghui Zhuang
    Qingxia Liu
    Fractional Calculus and Applied Analysis, 2013, 16 : 9 - 25
  • [24] Effective Modified Fractional Reduced Differential Transform Method for Solving Multi-Term Time-Fractional Wave-Diffusion Equations
    Al-rabtah, Adel
    Abuasad, Salah
    SYMMETRY-BASEL, 2023, 15 (09):
  • [25] Fully discrete spectral method for solving a novel multi-term time-fractional mixed diffusion and diffusion-wave equation
    Liu, Yanqin
    Sun, HongGuang
    Yin, Xiuling
    Feng, Libo
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (01):
  • [26] Finite Element Scheme with H2N2 Interpolation for Multi-Term Time-Fractional Mixed Sub-Diffusion and Diffusion-Wave Equation
    Zhang, Huiqin
    Chen, Yanping
    Zhou, Jianwei
    Wang, Yang
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2024, 16 (05) : 1197 - 1222
  • [27] Galerkin approximation for multi-term time-fractional differential equations
    Arifeen, Shams Ul
    Haq, Sirajul
    Ali, Ihteram
    Aldosary, Saud Fahad
    AIN SHAMS ENGINEERING JOURNAL, 2024, 15 (07)
  • [28] Meshless method of solving multi-term time-fractional integro-differential equation
    Du, Hong
    Yang, Xinyue
    Chen, Zhong
    APPLIED MATHEMATICS LETTERS, 2023, 141
  • [29] Finite Element Scheme with H2N2 Interpolation for Multi-Term Time-Fractional Mixed Sub-Diffusion and Diffusion-Wave Equation
    Zhang, Huiqin
    Chen, Yanping
    Zhou, Jianwei
    Wang, Yang
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2024,
  • [30] Superconvergence analysis of nonconforming finite element method for time-fractional nonlinear parabolic equations on anisotropic meshes
    Zhang, Houchao
    Yang, Xiaoxia
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2019, 77 (10) : 2707 - 2724