Superconvergence of a Finite Element Method for the Multi-term Time-Fractional Diffusion Problem

被引:2
|
作者
Chaobao Huang
Martin Stynes
机构
[1] Shandong University of Finance and Economics,School of Mathematics and Quantitative Economics
[2] Beijing Computational Science Research Center,Applied and Computational Mathematics Division
[3] Beijing Computational Science Research Center,Applied and Computational Mathematics Division
来源
关键词
Multiterm time-fractional; Finite element method; Gronwall inequality; Superconvergence; Caputo derivative; 65M60; 65M12; 35R11;
D O I
暂无
中图分类号
学科分类号
摘要
A time-fractional initial-boundary value problem is considered, where the differential equation has a sum of fractional derivatives of different orders, and the spatial domain lies in Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {R}}^d$$\end{document} with d∈{1,2,3}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\in \{1,2,3\}$$\end{document}. A priori bounds on the solution and its derivatives are stated; these show that typical solutions have a weak singularity at the initial time t=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t=0$$\end{document}. A standard finite element method with mapped piecewise bilinears is used to discretise the spatial derivatives, while for each time derivative we use the L1 scheme on a temporal graded mesh. Our analysis reveals the optimal grading that one should use for this mesh. A novel discrete fractional Gronwall inequality is proved: the statement of this inequality and its proof are different from any previously published Gronwall inequality. This inequality is used to derive an optimal error estimate in L∞(H1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^\infty (H^1)$$\end{document}. It is also used to show that, if each mesh element is rectangular in the case d=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=2$$\end{document} or cubical in the case d=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=3$$\end{document}, with the sides of the element parallel to the coordinate axes, then a simple postprocessing of the computed solution will yield a higher order of convergence in the spatial direction. Numerical results are presented to show the sharpness of our theoretical results.
引用
收藏
相关论文
共 50 条
  • [1] Superconvergence of a Finite Element Method for the Multi-term Time-Fractional Diffusion Problem
    Huang, Chaobao
    Stynes, Martin
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 82 (01)
  • [2] An α-robust finite element method for a multi-term time-fractional diffusion problem
    Huang, Chaobao
    Stynes, Martin
    Chen, Hu
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 389
  • [3] The Galerkin finite element method for a multi-term time-fractional diffusion equation
    Jin, Bangti
    Lazarov, Raytcho
    Liu, Yikan
    Zhou, Zhi
    JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 281 : 825 - 843
  • [4] A Weak Galerkin Finite Element Method for Multi-Term Time-Fractional Diffusion Equations
    Zhou, Jun
    Xu, Da
    Chen, Hongbin
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2018, 8 (01) : 181 - 193
  • [5] A Mixed Finite Element Method for the Multi-Term Time-Fractional Reaction-Diffusion Equations
    Zhao, Jie
    Dong, Shubin
    Fang, Zhichao
    FRACTAL AND FRACTIONAL, 2024, 8 (01)
  • [6] Mixed finite-element method for multi-term time-fractional diffusion and diffusion-wave equations
    Meng Li
    Chengming Huang
    Wanyuan Ming
    Computational and Applied Mathematics, 2018, 37 : 2309 - 2334
  • [7] Mixed finite-element method for multi-term time-fractional diffusion and diffusion-wave equations
    Li, Meng
    Huang, Chengming
    Ming, Wanyuan
    COMPUTATIONAL & APPLIED MATHEMATICS, 2018, 37 (02): : 2309 - 2334
  • [8] Superconvergence analysis of finite element method for time-fractional Thermistor problem
    Shi, Dongyang
    Yang, Huaijun
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 323 : 31 - 42
  • [9] A transformed L 1 method for solving the multi-term time-fractional diffusion problem
    She, Mianfu
    Li, Dongfang
    Sun, Hai-wei
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2022, 193 : 584 - 606
  • [10] Finite element multigrid method for multi-term time fractional advection diffusion equations
    Bu, Weiping
    Liu, Xiangtao
    Tang, Yifa
    Yang, Jiye
    INTERNATIONAL JOURNAL OF MODELING SIMULATION AND SCIENTIFIC COMPUTING, 2015, 6 (01)