Superconvergence analysis and a posteriori error estimation of a finite element method for an optimal control problem governed by integral equations

被引:0
作者
Ningning Yan
机构
[1] Academy of Mathematics and System Sciences,LSEC, Institute of System Sciences
[2] Chinese Academy of Sciences,undefined
来源
Applications of Mathematics | 2009年 / 54卷
关键词
optimal control; integral equation; Galerkin method; superconvergence; a posteriori error estimates; 65N30; 65R20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we discuss the numerical simulation for a class of constrained optimal control problems governed by integral equations. The Galerkin method is used for the approximation of the problem. A priori error estimates and a superconvergence analysis for the approximation scheme are presented. Based on the results of the superconvergence analysis, a recovery type a posteriori error estimator is provided, which can be used for adaptive mesh refinement.
引用
收藏
页码:267 / 283
页数:16
相关论文
共 32 条
[1]  
Alt W.(1984)On the approximation of infinite optimisation problems with an application to optimal control problems Appl. Math. Optimization 12 15-27
[2]  
Becker R.(2000)Adaptive finite element methods for optimal control of partial differential equations: Basic concept SIAM J. Control Optim. 39 113-132
[3]  
Kapp H.(1996)On global superconvergence of iterated collocation solutions to linear second-kind Volterra integral equations J. Comput. Appl. Math. 67 185-189
[4]  
Rannacher R.(2005)Finite element methods for optimal control problems governed by integral equations and integro-differential equations Numer. Math. 101 1-27
[5]  
Brunner H.(2006)Error estimates and superconvergence of mixed finite element for quadratic optimal control Int. J. Numer. Anal. Model. 3 311-321
[6]  
Yan N.(2008)A Legendre Galerkin spectral method for optimal control problems governed by elliptic equations SIAM J. Numer. Anal. 46 2254-2275
[7]  
Brunner H.(2001)High-accuracy finite element method for optimal control problem J. Syst. Sci. Complex. 14 106-110
[8]  
Yan N.(1973)Approximation of a class of optimal control problems with order of convergence estimates J. Math. Anal. Appl. 44 28-47
[9]  
Chen Y.(1991)Approximation of an elliptic control problem by the finite element method Numer. Funct. Anal. Appl. Optim. 12 299-314
[10]  
Liu W.(2007)A posteriori error estimates of recovery type for distributed convex optimal control problems J. Sci. Comput. 33 155-182