On Volterra Integral Equations on Time Scales

被引:0
作者
Iguer Luis Domini dos Santos
机构
[1] UNESP-Univ Estadual Paulista,Departamento de Matemática
来源
Mediterranean Journal of Mathematics | 2015年 / 12卷
关键词
Primary 45D05; Secondary 39A12; Volterra integral equations; time scales; continuous dependence;
D O I
暂无
中图分类号
学科分类号
摘要
The purpose of the present paper is to study some properties of solutions of Volterra integral equations on time scales. We generalize to a time scale some known properties concerning continuity and convergence of solutions from the continuous case.
引用
收藏
页码:471 / 480
页数:9
相关论文
共 26 条
[1]  
Adivar M.(2010)Existence of resolvent for Volterra integral equations on time scales Bull. Aust. Math. Soc. 82 139-155
[2]  
Raffoul Y.N.(2002)Dynamic equations on time scales: a survey J. Comput. Appl. Math. 141 1-26
[3]  
Agarwal R.(2010)Surface areas and surface integrals on time scales Dynam. Syst. Appl. 19 435-453
[4]  
Bohner M.(2011)Properties of the Laplace transform on time scales with arbitrary graininess Integral Trans. Spec. Funct. 22 785-800
[5]  
O’Regan D.(2012)Measure functional differential equations and functional dynamic equations on time scales J. Differ. Equ. 252 3816-3847
[6]  
Peterson A.(2003)Integration on time scales J. Math. Anal. Appl. 285 107-127
[7]  
Bohner M.(1990)Analysis on measure chains—a unified approach to continuous and discrete calculus Results Math. 18 18-56
[8]  
Guseinov G.S.(2011)First order conditions for generalized variational problems over time scales Comput. Math. Appl. 62 3490-3503
[9]  
Bohner M.(2008)Volterra integral equations on time scales: basic qualitative and quantitative results with applications to initial value problems on unbounded domains Int. J. Diff. Equ. 3 103-133
[10]  
Guseinov G.S.(2009)On a nonstandard Volterra type dynamic integral equation on time scales Electron. J. Qual. Theory Differ. Equ. 72 1-14