Hybrid Steepest Descent Method with Variable Parameters for General Variational Inequalities

被引:0
作者
Yanrong Yu
Rudong Chen
机构
[1] Tianjin Polytechnic University,Department of Mathematics
来源
Journal of Inequalities and Applications | / 2007卷
关键词
Variational Inequality; Variable Parameter; Strong Convergence; Steep Descent; Descent Method;
D O I
暂无
中图分类号
学科分类号
摘要
We study the strong convergence of a hybrid steepest descent method with variable parameters for the general variational inequality (GVI)[inline-graphic not available: see fulltext]. Consequently, as an application, we obtain some results concerning the constrained generalized pseudoinverse. Our results extend and improve the result of Yao and Noor (2007) and many others.
引用
收藏
相关论文
共 29 条
[1]  
Stampacchia G(1964)Formes bilinéaires coercitives sur les ensembles convexes Comptes Rendus de l'Académie des Sciences 258 4413-4416
[2]  
Noor MA(1988)General variational inequalities Applied Mathematics Letters 1 119-122
[3]  
Noor MA(2004)Some developments in general variational inequalities Applied Mathematics and Computation 152 199-277
[4]  
Noor MA(2004)Self-adaptive projection algorithms for general variational inequalities Applied Mathematics and Computation 151 659-670
[5]  
Noor KI(1993)Wiener-Hopf equations and variational inequalities Journal of Optimization Theory and Applications 79 197-206
[6]  
Noor MA(2007)On modified hybrid steepest-descent methods for general variational inequalities Journal of Mathematical Analysis and Applications 334 1276-1289
[7]  
Yao Y(1990)Variational inequalities and the pricing of American options Acta Applicandae Mathematicae 21 263-289
[8]  
Noor MA(2003)Convergence of hybrid steepest-descent methods for variational inequalities Journal of Optimization Theory and Applications 119 185-201
[9]  
Jaillet P(2006)Convergence of hybrid steepest-descent methods for generalized variational inequalities Acta Mathematica Sinica 22 1-12
[10]  
Lamberton D(1993)Wiener-Hopf equations and variational inequalities Journal of Optimization Theory and Applications 79 197-206