A new active set Newton-type algorithm for the solution of inequality constrained minimization problems is proposed. The algorithm possesses the following favorable characteristics: (i) global convergence under mild assumptions; (ii) superlinear convergence of primal variables without strict complementarity; (iii) a Newton-type direction computed by means of a truncated conjugate gradient method. Preliminary computational results are reported to show viability of the approach in large scale problems having only a limited number of constraints.
机构:
Univ Roma La Sapienza, Dipartimento Informat & Sistemist A Ruberti, I-00185 Rome, ItalyUniv Roma La Sapienza, Dipartimento Informat & Sistemist A Ruberti, I-00185 Rome, Italy
Facchinei, F
Lucidi, S
论文数: 0引用数: 0
h-index: 0
机构:
Univ Roma La Sapienza, Dipartimento Informat & Sistemist A Ruberti, I-00185 Rome, ItalyUniv Roma La Sapienza, Dipartimento Informat & Sistemist A Ruberti, I-00185 Rome, Italy
Lucidi, S
Palagi, L
论文数: 0引用数: 0
h-index: 0
机构:
Univ Roma La Sapienza, Dipartimento Informat & Sistemist A Ruberti, I-00185 Rome, ItalyUniv Roma La Sapienza, Dipartimento Informat & Sistemist A Ruberti, I-00185 Rome, Italy