Pharmacophore features for machine learning in pharmaceutical virtual screening

被引:0
作者
Xiaojing Wang
Wenxiu Han
Xin Yan
Jun Zhang
Mengqi Yang
Pei Jiang
机构
[1] Jining Medical University,Jining First People’s Hospital
[2] Sun Yat-sen University,Research Center for Drug Discovery, School of Pharmaceutical Sciences
[3] The First Affiliated Hospital of Zhengzhou University,Department of Pharmacy
来源
Molecular Diversity | 2020年 / 24卷
关键词
Pharmacophore; Feature; Virtual screening; Machine learning;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:407 / 412
页数:5
相关论文
共 67 条
[11]  
Mathieu M(2007)Molecular similarity analysis in virtual screening: foundations, limitations and novel approaches Drug Discov Today 12 225-233
[12]  
Muchmore SW(2005)Virtual screening of molecular databases using a support vector machine J Chem Inf Model 45 549-561
[13]  
Brown SP(2014)Support vector machines for drug discovery Expert Opin Drug Discov 9 93-104
[14]  
Grant JA(2001)Random forests Mach Learn 45 5-32
[15]  
Haigh JA(2012)Directory of useful decoys, enhanced (DUD-E): better ligands and decoys for better benchmarking J Med Chem 55 6582-6594
[16]  
Nevins N(2001)3-D pharmacophores in drug discovery Curr Pharm Des 7 567-597
[17]  
Jain AN(2007)CAESAR: a new conformer generation algorithm based on recursive buildup and local rotational symmetry consideration J Chem Inf Model 47 1923-1932
[18]  
Kelley B(2008)Building predictive models in R using the caret package J Stat Softw 28 1-26
[19]  
Vainio MJ(2010)Regularization paths for generalized linear models via coordinate descent J Stat Softw 33 1-22
[20]  
Puranen JS(2004)kernlab—an S4 package for kernel methods in R J Stat Softw 69 721-729