Estimates for the hyperbolic metric of the punctured plane and applications

被引:0
作者
A. Yu. Solynin
M. Vuorinen
机构
[1] Steklov Institute of Mathematics at St. Petersburg,Department of Mathematics
[2] University of Helsinki,undefined
来源
Israel Journal of Mathematics | 2001年 / 124卷
关键词
Steklov Institute; Conformal Mapping; Quasiconformal Mapping; Fuchsian Group; Hyperbolic Distance;
D O I
暂无
中图分类号
学科分类号
摘要
The hyperbolic metrichΩ of the twice punctured complex plane Ω is studied. A new recursive algorithm for computing the density λΩ ofhΩ is given. For a proper subdomainG of Ω we answer a question of G. Martin concerning quasiconformal mappings ofG that can be extended to the complement ofG as the identity map.
引用
收藏
页码:29 / 60
页数:31
相关论文
共 28 条
[1]  
Agard S. B.(1965)Angles and quasiconformal mappings Proceedings of the London Mathematical Society 14A 1-21
[2]  
Gehring F. W.(1995)Some properties of quasiconformal distortion functions New Zealand Journal of Mathematics 24 1-15
[3]  
Anderson G. D.(1978)The Poincaré metric of plane domains Journal of the London Mathematical Society 18 475-483
[4]  
Vamanamurthy M. K.(1944) (in Russian, French summary) Matematicheskii Sbornik 15 285-318
[5]  
Beardon A. F.(1974)On moduli of Kleinian groups Russian Mathematical Surveys 29 88-102
[6]  
Pommerenke Ch.(1979)A new proof of a fundamental inequality for quasiconformal mappings Journal d’Analyse Mathématique 36 15-30
[7]  
Bermant A.(1994) (in Russian) Uspekhi Matematicheskikh Nauk 49 3-76
[8]  
Bers L.(1947) (in Russian) Matematicheskii Sbornik 21 83-115
[9]  
Bers L.(1962)On a class of conformal metrics Nagoya Mathematical Journal 21 1-60
[10]  
Dubinin V. N.(1980)Precise bounds in the theorem of Schottky and Picard Journal of the London Mathematical Society 21 279-286