Flows associated to Cameron-Martin type vector fields on path spaces over a Riemannian manifold

被引:0
作者
Jing-xiao Zhang
机构
[1] Renmin University of China,Center for Applied Statistics, School of Statistics
来源
Acta Mathematicae Applicatae Sinica, English Series | 2013年 / 29卷
关键词
flow; Cameron-Martin type vector field; path space; Riemannian manifold; 62P05; 93E20;
D O I
暂无
中图分类号
学科分类号
摘要
The flow on the Wiener space associated to a tangent process constructed by Cipriano and Cruzeiro, as well as by Gong and Zhang does not allow to recover Driver’s Cameron-Martin theorem on Riemannian path space. The purpose of this work is to refine the method of the modified Picard iteration used in the previous work by Gong and Zhang and to try to recapture and extend the result of Driver. In this paper, we establish the existence and uniqueness of a flow associated to a Cameron-Martin type vector field on the path space over a Riemannian manifold.
引用
收藏
页码:499 / 508
页数:9
相关论文
共 16 条
[1]  
Cruzeiro A B(1983)Équations différentielles sur l’espace de Wiener et formules de Cameron-Martin nonlin éaires J. Funct. Anal. 54 206-227
[2]  
Cruzeiro AB(1986)Renormalized differential geometry on path spaces: Structural equation, curvature J. Funct. Anal. 139 119-181
[3]  
Malliavin P(1999)Flows associated to tangent processes on the Wiener space J. Func. Anal. 166 310-331
[4]  
Cipriano F(1992)A Cameron-Martin type quasi-invariance theorem for Brownian motion on a Riemannian compact manifold J. Funct. Anal. 110 272-376
[5]  
Cruzeiro AB(1999)The Lie bracket of adapted vector fields on Wiener spaces Appl. Math. Optim. 392 179-210
[6]  
Driver B(1996)Towards a Riemannian geometry on the space over a Riemannian manifold J. Funct. Anal. 134 392-416
[7]  
Driver B(1993)Stochastic analysis on the path spaces of a Riemannian manifold J. Funct. Anal. 118 228-253
[8]  
Enchev O(2007)Flows associated to an adapted vector field on the wiener space J. Funct. Anal. 253 647-674
[9]  
Stroock DW(1995)Quasi-invariance of the Wiener measure on the path space over a compact Riemannian manifold J. Funct. Anal. 134 417-450
[10]  
Fang SZ(1997)A class of vector fields on path space J. Funct. Anal. 145 205-223